232,088 research outputs found

    Low-energy parameters and spin gap of a frustrated spin-ss Heisenberg antiferromagnet with s32s \leq \frac{3}{2} on the honeycomb lattice

    Full text link
    The coupled cluster method is implemented at high orders of approximation to investigate the zero-temperature (T=0)(T=0) phase diagram of the frustrated spin-ss J1J_{1}--J2J_{2}--J3J_{3} antiferromagnet on the honeycomb lattice. The system has isotropic Heisenberg interactions of strength J1>0J_{1}>0, J2>0J_{2}>0 and J3>0J_{3}>0 between nearest-neighbour, next-nearest-neighbour and next-next-nearest-neighbour pairs of spins, respectively. We study it in the case J3=J2κJ1J_{3}=J_{2}\equiv \kappa J_{1}, in the window 0κ10 \leq \kappa \leq 1 that contains the classical tricritical point (at κcl=12\kappa_{{\rm cl}}=\frac{1}{2}) of maximal frustration, appropriate to the limiting value ss \to \infty of the spin quantum number. We present results for the magnetic order parameter MM, the triplet spin gap Δ\Delta, the spin stiffness ρs\rho_{s} and the zero-field transverse magnetic susceptibility χ\chi for the two collinear quasiclassical antiferromagnetic (AFM) phases with N\'{e}el and striped order, respectively. Results for MM and Δ\Delta are given for the three cases s=12s=\frac{1}{2}, s=1s=1 and s=32s=\frac{3}{2}, while those for ρs\rho_{s} and χ\chi are given for the two cases s=12s=\frac{1}{2} and s=1s=1. On the basis of all these results we find that the spin-12\frac{1}{2} and spin-1 models both have an intermediate paramagnetic phase, with no discernible magnetic long-range order, between the two AFM phases in their T=0T=0 phase diagrams, while for s>1s > 1 there is a direct transition between them. Accurate values are found for all of the associated quantum critical points. While the results also provide strong evidence for the intermediate phase being gapped for the case s=12s=\frac{1}{2}, they are less conclusive for the case s=1s=1. On balance however, at least the transition in the latter case at the striped phase boundary seems to be to a gapped intermediate state

    The DSUBmm Approximation Scheme for the Coupled Cluster Method and Applications to Quantum Magnets

    Full text link
    A new approximate scheme, DSUBmm, is described for the coupled cluster method. We then apply it to two well-studied (spin-1/2 Heisenberg antiferromagnet) spin-lattice models, namely: the XXZXXZ and the XYXY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the sublattice magnetization and the quantum critical point. They are in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods and those from the CCM using the LSUBmm scheme.Comment: 18 pages, 10 figure

    Darwinian Data Structure Selection

    Get PDF
    Data structure selection and tuning is laborious but can vastly improve an application's performance and memory footprint. Some data structures share a common interface and enjoy multiple implementations. We call them Darwinian Data Structures (DDS), since we can subject their implementations to survival of the fittest. We introduce ARTEMIS a multi-objective, cloud-based search-based optimisation framework that automatically finds optimal, tuned DDS modulo a test suite, then changes an application to use that DDS. ARTEMIS achieves substantial performance improvements for \emph{every} project in 55 Java projects from DaCapo benchmark, 88 popular projects and 3030 uniformly sampled projects from GitHub. For execution time, CPU usage, and memory consumption, ARTEMIS finds at least one solution that improves \emph{all} measures for 86%86\% (37/4337/43) of the projects. The median improvement across the best solutions is 4.8%4.8\%, 10.1%10.1\%, 5.1%5.1\% for runtime, memory and CPU usage. These aggregate results understate ARTEMIS's potential impact. Some of the benchmarks it improves are libraries or utility functions. Two examples are gson, a ubiquitous Java serialization framework, and xalan, Apache's XML transformation tool. ARTEMIS improves gson by 16.516.5\%, 1%1\% and 2.2%2.2\% for memory, runtime, and CPU; ARTEMIS improves xalan's memory consumption by 23.523.5\%. \emph{Every} client of these projects will benefit from these performance improvements.Comment: 11 page

    Covariant gaussian approximation in Ginzburg - Landau model

    Full text link
    Condensed matter systems undergoing second order transition away from the critical fluctuation region are usually described sufficiently well by the mean field approximation. The critical fluctuation region, determined by the Ginzburg criterion, T/Tc1Gi\left \vert T/T_{c}-1\right \vert \ll Gi, is narrow even in high TcT_{c} superconductors and has universal features well captured by the renormalization group method. However recent experiments on magnetization, conductivity and Nernst effect suggest that fluctuations effects are large in a wider region both above and below TcT_{c}. In particular some "pseudogap" phenomena and strong renormalization of the mean field critical temperature TmfT_{mf} can be interpreted as strong fluctuations effects that are nonperturbative (cannot be accounted for by "gaussian fluctuations"). The physics in a broader region therefore requires more accurate approach. Self consistent methods are generally "non - conserving" in the sense that the Ward identities are not obeyed. This is especially detrimental in the symmetry broken phase where, for example, Goldstone bosons become massive. Covariant gaussian approximation remedies these problems. The Green's functions obey all the Ward identities and describe the fluctuations much better. The results for the order parameter correlator and magnetic penetration depth of the Ginzburg - Landau model of superconductivity are compared with both Monte Carlo simulations and experiments in high TcT_{c} cuprates.Comment: 24 pages, 7 figure

    Frustrated spin-12\frac{1}{2} Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model

    Full text link
    The zero-temperature phase diagram of the spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1J_{1}^{\perp} model on an AAAA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1}>0, respectively, are included in each layer. The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1δJ1J_{1}^{\perp} \equiv \delta J_{1}. The magnetic order parameter MM (viz., the sublattice magnetization) is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N\'{e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ0\delta 0) to one another. Calculations are performed at nnth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked cluster theorem and the Hellmann-Feynman theorem, with n10n \leq 10. The sole approximation made is to extrapolate such sequences of nnth-order results for MM to the exact limit, nn \to \infty. By thus locating the points where MM vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ\kappa--δ\delta half-plane with κ>0\kappa > 0. In particular, we provide the accurate estimate, (κ0.547,δ0.45\kappa \approx 0.547,\delta \approx -0.45), for the position of the quantum triple point (QTP) in the region δ<0\delta < 0. We also show that there is no counterpart of such a QTP in the region δ>0\delta > 0, where the two quasiclassical phase boundaries show instead an ``avoided crossing'' behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected

    τρππν\tau\to\rho\pi\pi\nu decays

    Full text link
    Effective chiral theory of mesons is applied to study the four decay modes of τρππν\tau\to\rho\pi\pi\nu. Theoretical values of the branching ratios are in agreement with the data. The theory predicts that the a1a_{1} resonance plays a dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur
    corecore