2,305 research outputs found
Towards a unification of HRT and SCOZA. Analysis of exactly solvable mean-spherical and generalized mean-spherical models
The hierarchical reference theory (HRT) and the self-consistent
Ornstein-Zernike approximation (SCOZA) are two liquid state theories that both
furnish a largely satisfactory description of the critical region as well as
the phase coexistence and equation of state in general. Furthermore, there are
a number of similarities that suggest the possibility of a unification of both
theories. Earlier in this respect we have studied consistency between the
internal energy and free energy routes. As a next step toward this goal we here
consider consistency with the compressibility route too, but we restrict
explicit evaluations to a model whose exact solution is known showing that a
unification works in that case. The model in question is the mean spherical
model (MSM) which we here extend to a generalized MSM (GMSM). For this case, we
show that the correct solutions can be recovered from suitable boundary
conditions through either of SCOZA or HRT alone as well as by the combined
theory. Furthermore, the relation between the HRT-SCOZA equations and those of
SCOZA and HRT becomes transparent.Comment: Minimal correction of some typos found during proof reading. Accepted
for publication in Phys. Rev.
Rapid Fabrication of Custom Microfluidic Devices for Research and Educational Applications
Microfluidic devices allow for the manipulation of fluids, particles, cells, micro-sized organs or organisms in channels ranging from the nano to submillimeter scales. A rapid increase in the use of this technology in the biological sciences has prompted a need for methods that are accessible to a wide range of research groups. Current fabrication standards, such as PDMS bonding, require expensive and time consuming lithographic and bonding techniques. A viable alternative is the use of equipment and materials that are easily affordable, require minimal expertise and allow for the rapid iteration of designs. In this work we describe a protocol for designing and producing PET-laminates (PETLs), microfluidic devices that are inexpensive, easy to fabricate, and consume significantly less time to generate than other approaches to microfluidics technology. They consist of thermally bonded film sheets, in which channels and other features are defined using a craft cutter. PETLs solve field-specific technical challenges while dramatically reducing obstacles to adoption. This approach facilitates the accessibility of microfluidics devices in both research and educational settings, providing a reliable platform for new methods of inquiry
The preparation of metallic boron
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1940.Includes bibliographical references (leaf 31).by James F. Levis.B.S
Alternative mathematical programming formulations for FSS synthesis
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem
The role of service areas in the optimization of FSS orbital and frequency assignments
A relationship is derived, on a single-entry interference basis, for the minimum allowable spacing between two satellites as a function of electrical parameters and service-area geometries. For circular beams, universal curves relate the topocentric satellite spacing angle to the service-area separation angle measured at the satellite. The corresponding geocentric spacing depends only weakly on the mean longitude of the two satellites, and this is true also for alliptical antenna beams. As a consequence, if frequency channels are preassigned, the orbital assignment synthesis of a satellite system can be formulated as a mixed-integer programming (MIP) problem or approximated by a linear programming (LP) problem, with the interference protection requirements enforced by constraints while some linear function is optimized. Possible objective-function choices are discussed and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed ideal location set. A test problem is posed consisting of six service areas, each served by one satellite, all using elliptical antenna beams and the same frequency channels. Numerical results are given for the three ideal location prescriptions for both the MIP and LP formulations. The resulting scenarios also satisfy reasonable aggregate interference protection requirements
Gilteritinib as post-transplant maintenance for AML with internal tandem duplication mutation of FLT3
PURPOSE: Allogeneic hematopoietic cell transplantation (HCT) improves outcomes for patients with AML harboring an internal tandem duplication mutation of
METHODS: Adults with
RESULTS: Three hundred fifty-six participants were randomly assigned post-HCT to receive gilteritinib or placebo. Although RFS was higher in the gilteritinib arm, the difference was not statistically significant (hazard ratio [HR], 0.679 [95% CI, 0.459 to 1.005]; two-sided
CONCLUSION: Although the overall improvement in RFS was not statistically significant, RFS was higher for participants with detectabl
- …