4,202 research outputs found

    Thermal insulation attaching means

    Get PDF
    An improved isolation system is provided for attaching ceramic tiles of insulating material to the surface of a structure to be protected against extreme temperatures of the nature expected to be encountered by the space shuttle orbiter. This system isolates the fragile ceramic tiles from thermally and mechanically induced vehicle structural strains. The insulating tiles are affixed to a felt isolation pad formed of closely arranged and randomly oriented fibers by means of a flexible adhesive and in turn the felt pad is affixed to the metallic vehicle structure by an additional layer of flexible adhesive

    Method and device for detection of surface discontinuities or defects

    Get PDF
    Surface discontinuities of defects such as cracks and orifices are detected by applying a penetrating fluid, preferably a liquid, to a test surface so as to cause the liquid to penetrate any minute cracks or opening in the surface, removing the excess liquid from the surface, and leaving a residual in the discontinuities, cavities, or in the subsurface materials. A sheet of porous material impregnated with a sensitizing medium which will react with vapors of the residual liquid to form a visible pattern is applied to the test surface. The residual liquid trapped in the discontinuities, cavities, or subsurface material is vaporized, and, as the vapors contact the sensitizing medium on the sheet, a pattern corresponding to the discontinuity is formed on the sheet material and the penetrant completely removed from the sample

    Oxygen atom reaction with shuttle materials at orbital altitudes

    Get PDF
    Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism

    Hybridisations within the genus Schistosoma: implications for evolution, epidemiology and control

    Get PDF

    Heat-shrinkable jacket holds fluid in contact with tensile test specimen

    Get PDF
    Heat-shrinkable plastic tubing can be quickly sealed around a metal tensile test specimen and used as a jacket for any compatible liquid

    Space shuttle mechanistic studies to characterize atomic oxygen interactions with surfaces

    Get PDF
    A materials interaction experiment has been approved to study atomic oxygen interaction mechanisms and develop coatings for Space Station elements requiring long-lived operation in the LEO environment. A brief summary of this experiment is presented and the required exposure conditions are reviewed

    Space Station lubrication considerations

    Get PDF
    Future activities in space will require the use of large structures and high power availability in order to fully exploit opportunities in Earth and stellar observations, space manufacturing and the development of optimum space transportation vehicles. Although these large systems will have increased capabilities, the associated development costs will be high, and will dictate long life with minimum maintenance. The Space Station provides a concrete example of such a system; it is approximately one hundred meters in major dimensions and has a life requirement of thirty years. Numerous mechanical components will be associated with these systems, a portion of which will be exposed to the space environment. If the long life and low maintenance goals are to be satisfied, lubricants and lubrication concepts will have to be carefully selected. Current lubrication practices are reviewed with the intent of determining acceptability for the long life requirements. The effects of exposure of lubricants and lubricant binders to the space environment are generally discussed. Potential interaction of MoS2 with atomic oxygen, a component of the low Earth orbit environment, appears to be significant

    Introductory comments

    Get PDF
    Vibroacoustic and thermal environment data gathered from the first three flights of the space shuttle are presented. The characterization of the particulate, gaseous, and electromagnetic emissions associated with the shuttle flight is emphasized. Measurements of vehicle glow light emissions and material effects (mass loss) due to the low Earth environment interactions with the shuttle vehicle are presented

    Working group written presentation: Atomic oxygen

    Get PDF
    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

    Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    Get PDF
    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces
    corecore