514 research outputs found

    Linear connections on matrix geometries

    Get PDF
    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.Comment: 14p, LPTHE-ORSAY 94/9

    Linear Connections on Fuzzy Manifolds

    Get PDF
    Linear connections are introduced on a series of noncommutative geometries which have commutative limits. Quasicommutative corrections are calculated.Comment: 10 pages PlainTex; LPTHE Orsay 95/42; ESI Vienna 23

    Linear Connections in Non-Commutative Geometry

    Get PDF
    A construction is proposed for linear connections on non-commutative algebras. The construction relies on a generalisation of the Leibnitz rules of commutative geometry and uses the bimodule structure of Ω1\Omega^1. A special role is played by the extension to the framework of non-commutative geometry of the permutation of two copies of Ω1\Omega^1. The construction of the linear connection as well as the definition of torsion and curvature is first proposed in the setting of the derivations based differential calculus of Dubois- Violette and then a generalisation to the framework proposed by Connes as well as other non-commutative differential calculi is suggested. The covariant derivative obtained admits an extension to the tensor product of several copies of Ω1\Omega^1. These constructions are illustrated with the example of the algebra of n×n n \times n matrices.Comment: 15 pages, LMPM ../94 (uses phyzzx

    BRS Cohomology of the Supertranslations in D=4

    Full text link
    Supersymmetry transformations are a kind of square root of spacetime translations. The corresponding Lie superalgebra always contains the supertranslation operator ÎŽ=cασαÎČ˙Όc‟ÎČ˙(ϔΌ)† \delta = c^{\alpha} \sigma^{\mu}_{\alpha \dot \beta} {\overline c}^{\dot \beta} (\epsilon^{\mu})^{\dag} . We find that the cohomology of this operator depends on a spin-orbit coupling in an SU(2) group and has a quite complicated structure. This spin-orbit type coupling will turn out to be basic in the cohomology of supersymmetric field theories in general.Comment: 14 pages, CTP-TAMU-13/9

    Module parallel transports in fuzzy gauge theory

    Full text link
    In this article we define and investigate a notion of parallel transport on finite projective modules over finite matrix algebras. Given a derivation-based differential calculus on the algebra and a connection on the module, we construct for every derivation X a module parallel transport, which is a lift to the module of the one-parameter group of algebra automorphisms generated by X. This parallel transport morphism is determined uniquely by an ordinary differential equation depending on the covariant derivative along X. Based on these parallel transport morphisms, we define a basic set of gauge invariant observables, i.e. functions from the space of connections to the complex numbers. For modules equipped with a hermitian structure, we prove that this set of observables is separating on the space of gauge equivalence classes of hermitian connections. This solves the gauge copy problem for fuzzy gauge theories.Comment: 9 pages, no figures; v2: references added; v3: improved, corrected and extended version, title changed, to appear on International Journal of Geometric Methods in Modern Physic

    Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories

    Full text link
    A new way of solving the descent equations corresponding to the Wess-Zumino consistency conditions is presented. The method relies on the introduction of an operator ÎŽ\delta which allows to decompose the exterior space-time derivative dd as a BRSBRS commutator. The case of the Yang-Mills theories is treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy

    Algebraic structure of gravity in Ashtekar variables

    Get PDF
    The BRST transformations for gravity in Ashtekar variables are obtained by using the Maurer-Cartan horizontality conditions. The BRST cohomology in Ashtekar variables is calculated with the help of an operator ÎŽ\delta introduced by S.P. Sorella, which allows to decompose the exterior derivative as a BRST commutator. This BRST cohomology leads to the differential invariants for four-dimensional manifolds.Comment: 19 pages, report REF. TUW 94-1

    Yang-Mills gauge anomalies in the presence of gravity with torsion

    Full text link
    The BRST transformations for the Yang-Mills gauge fields in the presence of gravity with torsion are discussed by using the so-called Maurer-Cartan horizontality conditions. With the help of an operator \d which allows to decompose the exterior spacetime derivative as a BRST commutator we solve the Wess-Zumino consistency condition corresponding to invariant Chern-Simons terms and gauge anomalies.Comment: 24 pages, report REF. TUW 94-1

    Local Anomalies, Local Equivariant Cohomology and the Variational Bicomplex

    Full text link
    The locality conditions for the vanishing of local anomalies in field theory are shown to admit a geometrical interpretation in terms of local equivariant cohomology, thus providing a method to deal with the problem of locality in the geometrical approaches to the study of local anomalies based on the Atiyah-Singer index theorem. The local cohomology is shown to be related to the cohomology of jet bundles by means of the variational bicomplex theory. Using these results and the techniques for the computation of the cohomology of invariant variational bicomplexes in terms of relative Gel'fand-Fuks cohomology introduced in [6], we obtain necessary and sufficient conditions for the cancellation of local gravitational and mixed anomalies.Comment: 36 pages. The paper is divided in two part
    • 

    corecore