1,260 research outputs found
First experimental demonstration of temporal hypertelescope operation with a laboratory prototype
In this paper, we report the first experimental demonstration of a Temporal
HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested
in a manual cophasing configuration on a 1D object. The Point Spread Function
(PSF) is measured and exhibits a dynamics in the range of 300. A quantitative
analysis of the potential biases demonstrates that this limitation is related
to the residual phase fluctuation on each interferometric arm. Secondly, an
unbalanced binary star is imaged demonstrating the imaging capability of THT.
In addition, 2D PSF is recorded even if the telescope array is not optimized
for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure
Whispering Gallery States of Antihydrogen
We study theoretically interference of the long-living quasistationary
quantum states of antihydrogen atoms, localized near a concave material
surface. Such states are an antimatter analog of the whispering gallery states
of neutrons and matter atoms, and similar to the whispering gallery modes of
sound and electro-magnetic waves. Quantum states of antihydrogen are formed by
the combined effect of quantum reflection from van der Waals/Casimir-Polder
(vdW/CP) potential of the surface and the centrifugal potential. We point out a
method for precision studies of quantum reflection of antiatoms from vdW/CP
potential; this method uses interference of the whispering gallery states of
antihydrogen.Comment: 13 pages 7 figure
Bounds on gravitational wave backgrounds from large distance clock comparisons
Our spacetime is filled with gravitational wave backgrounds that constitute a
fluctuating environment created by astrophysical and cosmological sources.
Bounds on these backgrounds are obtained from cosmological and astrophysical
data but also by analysis of ranging and Doppler signals from distant
spacecraft. We propose here a new way to set bounds on those backgrounds by
performing clock comparisons between a ground clock and a remote spacecraft
equipped with an ultra-stable clock, rather than only ranging to an onboard
transponder. This technique can then be optimized as a function of the signal
to be measured and the dominant noise sources, leading to significant
improvements on present bounds in a promising frequency range where different
theoretical models are competing. We illustrate our approach using the SAGAS
project which aims to fly an ultra stable optical clock in the outer solar
system.Comment: 10 pages, 8 figures, minor amendment
Transverse-mode coupling in a Kerr medium
We analyze nonlinear transverse mode coupling in a Kerr medium placed in an
optical cavity and its influence on bistability and different kinds of quantum
noise reduction. Even for an input beam that is perfectly matched to a cavity
mode, the nonlinear coupling produces an excess noise in the fluctuations of
the output beam. Intensity squeezing seems to be particularly robust with
respect to mode coupling, while quadrature squeezing is more sensitive.
However, it is possible to find a mode the quadrature squeezing of which is not
affected by the coupling.Comment: 11 pages, 6 figures, LaTe
Direct Measurement of the Photon Statistics of a Triggered Single Photon Source
We studied intensity fluctuations of a single photon source relying on the
pulsed excitation of the fluorescence of a single molecule at room temperature.
We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of
observation timescale T, by recording every photocount. On timescale of a few
excitation periods, subpoissonian statistics is clearly observed and the
probablility of two-photons events is 10 times smaller than Poissonian pulses.
On longer times, blinking in the fluorescence, due to the molecular triplet
state, produces an excess of noise.Comment: 4 pages, 3 figures, 1 table submitted to Physical Review Letter
Vacuum induced torque between corrugated metallic plates
We study the torque arising between two corrugated metallic plates due to the
interaction with electromagnetic vacuum. This Casimir torque can be measured
with torsion pendulum techniques for separation distances as large as 1m.
It allows one to probe the nontrivial geometry dependence of the Casimir energy
in a configuration which can be evaluated theoretically with accuracy. In the
optimal experimental configuration, the commonly used proximity force
approximation turns out to overestimate the torque by a factor 2 or larger.Comment: 7 pages, 4 figures, to appear in Europhysics Letters. Technical
problem with eps file for figure 4 was fixe
Casimir energy and geometry : beyond the Proximity Force Approximation
We review the relation between Casimir effect and geometry, emphasizing
deviations from the commonly used Proximity Force Approximation (PFA). We use
to this aim the scattering formalism which is nowadays the best tool available
for accurate and reliable theory-experiment comparisons. We first recall the
main lines of this formalism when the mirrors can be considered to obey
specular reflection. We then discuss the more general case where non planar
mirrors give rise to non-specular reflection with wavevectors and field
polarisations mixed. The general formalism has already been fruitfully used for
evaluating the effect of roughness on the Casimir force as well as the lateral
Casimir force or Casimir torque appearing between corrugated surfaces. In this
short review, we focus our attention on the case of the lateral force which
should make possible in the future an experimental demonstration of the
nontrivial (i.e. beyond PFA) interplay of geometry and Casimir effect.Comment: corrected typos, added references, QFEXT'07 special issue in J. Phys.
Stochastic simulations of the quantum Zeno effect
Published versio
- …