707 research outputs found

    Mid-Infrared Imaging of NGC 6334 I

    Get PDF
    We present high-resolution (<0.5") mid-infrared Keck II images of individual sources in the central region of NGC 6334 I. We compare these images to images at a variety of other wavelengths from the near infrared to cm radio continuum and speculate on the nature of the NGC 6334 I sources. We assert that the cometary shape of the UCHII region here, NGC 6334 F, is due to a champagne-like flow from a source on the edge of a molecular clump and not a due to a bow shock caused by the supersonic motion of the UCHII region through the interstellar medium. The mid-infrared emission in concentrated into an arc of dust that define the boundary between the UCHII region and the molecular clump. This dust arc contains a majority of the masers in the region. We discuss the nature of the four near-infrared sources associated with IRS-I 1, and suggest that one of the sources, IRS1E, is responsible for the heating and ionizing of the UCHII region and the mid-infrared dust arc. Infrared source IRS-I 2, which has been thought to be a circumstellar disk associated with a linear distribution of methanol masers, is found not to be directly coincident with the masers and elongated at a much different position angle. IRS-I 3 is found to be a extended source of mid-infrared emission coming from a cluster of young dusty sources seen in the near-infrared.Comment: Accepted for publication by the Astrophysical Journal, 27 pages, 9 figure

    Mid-Infrared T-ReCS Spectroscopy of Local LIRGs

    Get PDF
    We present T-ReCS high spatial resolution N-band (8-13 micron) spectroscopy of the central regions (a few kpc) of 3 local LIRGs. The nuclear spectra show deep 9.7 micron silicate absorption feature and the high ionization [SIV]10.5 micron emission line, consistent with their optical classification as AGN. The two LIRGs with unresolved mid-IR emission do not show PAH emission at 11.3 micron in their nuclear spectra. The spatially resolved mid-IR spectroscopy of NGC 5135 allows us to separate out the spectra of the Seyfert nucleus, an HII region, and the diffuse region between them on scales of less than 2.5 arcsec ~ 600 pc. The diffuse region spectrum is characterized by strong PAH emission with almost no continuum, whereas the HII region shows PAH emission with a smaller equivalent width as well as [NeII]12.8 micron line

    Crystalline Silicate Emission in the Protostellar Binary Serpens--SVS20

    Full text link
    We present spatially resolved mid-infrared spectroscopy of the class I/flat-spectrum protostellar binary system SVS20 in the Serpens cloud core. The spectra were obtained with the mid-infrared instrument T-ReCS on Gemini-South. SVS20-South, the more luminous of the two sources, exhibits a mid-infrared emission spectrum peaking near 11.3 \micron, while SVS20-North exhibits a shallow amorphous silicate absorption spectrum with a peak optical depth of τ0.3\tau \sim 0.3. After removal of the the line-of-sight extinction by the molecular common envelope, the ``protostar-only'' spectra are found to be dominated by strong amorphous olivine emission peaking near 10 \micron. We also find evidence for emission from crystalline forsterite and enstatite associated with both SVS20-S and SVS20-N. The presence of crystalline silicate in such a young binary system indicates that the grain processing found in more evolved HAeBe and T Tauri pre-main sequence stars likely begins at a relatively young evolutionary stage, while mass accretion is still ongoing.Comment: Accepted for publication by The Astrophysical Journa

    Observations of Massive Star Forming Regions with Water Masers: Mid-Infrared Imaging

    Full text link
    We present here a mid-infrared imaging survey of 26 sites of water maser emission. Observations were obtained at the InfraRed Telescope Facility 3-m telescope with the University of Florida mid-infrared imager/spectrometer OSCIR, and the JPL mid-infrared camera MIRLIN. The main purpose of the survey was to explore the relationship between water masers and the massive star formation process. It is generally believed that water masers predominantly trace outflows and embedded massive stellar objects, but may also exist in circumstellar disks around young stars. We investigate each of these possibilities in light of our mid-infrared imaging. We find that mid-infrared emission seems to be more closely associated with water and OH maser emission than cm radio continuum emission from UC HII regions. We also find from the sample of sources in our survey that, like groups of methanol masers, both water and OH masers have a proclivity for grouping into linear or elongated distributions. We conclude that the vast majority of linearly distributed masers are not tracing circumstellar disks, but outflows and shocks instead.Comment: 49 pages; 23 figures; To appear in February 2005 ApJS; To download a version with better quality figures, go to http://www.ctio.noao.edu/~debuizer

    A Search for Mid-Infrared Emission from Hot Molecular Core Candidates

    Full text link
    We present here mid-infrared images of seven sites of water maser emission thought to be associated with the hot molecular core (HMC) phase of massive star formation. Observations were obtained at the NASA InfraRed Telescope Facility 3-m, the Gemini 8-m, and Keck II 10-m telescopes. We have detected mid-infrared sources at the locations of two HMC candidates, G11.94-0.62 and G45.07-0.13. We observed G19.61-0.23 and G34.26+0.15, each of which have HMCs previously detected in the mid-infrared. We did not detect mid-infrared emission from either HMC source, and we place new upper limits on the mid-infrared flux densities for these HMCs that are much lower than their previously reported flux densities. We were able to obtain extremely accurate astrometry for our mid-infrared images of G9.62+0.19, and conclude that the mid-infrared emission thought to be coming from the HMC in this field is in fact coming from a different source altogether.Comment: 19 pages, 17 figures, to appear in ApJ. Also available at http://www.ctio.noao.edu/~debuizer
    corecore