3,838 research outputs found
Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development
Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria
Temperature distribution in an aircraft tire at low ground speeds
An experimental study was conducted to define temperature profiles of 22 x 5.5, type 7, bias ply aircraft tires subjected to freely rolling, yawed rolling, and light braking conditions. Temperatures along the inner wall of freely rolling tires were greater than those near the outer surface. The effect of increasing tire deflection was to increase the temperature within the shoulder and sidewall areas of the tire carcass. The effect of cornering and braking was to increase the treat temperature. For taxi operations at fixed yaw angles, temperature profiles were not symmetric. Increasing the ground speed produced only moderate increases in tread temperature, whereas temperatures in the carcass shoulder and sidewall were essentially unaffected
Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds
A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface
Lunar penetrometer Patent
Development and characteristics of pentrometer for measuring physical properties of lunar surfac
Some effects of adverse weather conditions on performance of airplane antiskid braking systems
The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions
Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering
An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface
The effect of chine tires on nose gear water-spray characteristics of a twin engine airplane
An experimental investigation was performed to evaluate the effectiveness of nose gear chine tires in eliminating or minimizing the engine spray ingestion problem encountered on several occasions by the Merlin 4, a twin-engine propjet airplane. A study of the photographic and television coverage indicated that under similar test conditions the spray from the chine tires presented less of a potential engine spray ingestion problem than the conventional tires. Neither tire configuration appeared to pose any ingestion problem at aircraft speeds in excess of the hydroplaning speed for each tire, however, significant differences were noted in the spray patterns of the two sets of tires at sub-hydroplaning speeds. At sub-hydroplaning speeds, the conventional tires produced substantial spray above the wing which approached the general area of the engine air inlet at lower test speeds. The chine tires produced two distinct spray plumes at sub-hydroplaning speeds: one low-level plume which presented no apparent threat of ingestion, and one which at most test speeds was observed to be below the wing leading edge and thus displaced from the intakes on the engine nacelle
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research
Results from recent NASA tire thermal studies
The testing technique and some results from an experimental study to determine tire temperature profiles to aid in defining the strength and fatigue limitations of the tire carcass structure are described. This effort is part of a program to explore analytically and through experiment the temperature distribution in an aircraft tire during free roll and braked and yawed rolling conditions
- …