5,555 research outputs found

    Stratified dispersive model for material characterization using terahertz time-domain spectroscopy

    Full text link
    We propose a novel THz material analysis approach which provides highly accurate material parameters and can be used for industrial quality control. The method treats the inspected material within its environment locally as a stratified system and describes the light-matter interaction of each layer in a realistic way. The approach is illustrated in the time-domain and frequency-domain for two potential fields of implementation of THz technology: quality control of (coated) paper sheets and car paint multilayers, both measured in humid air.Comment: 4 pages, 4 figure

    Mg-Ni-H films as selective coatings: tunable reflectance by layered hydrogenation

    Get PDF
    Unlike other switchable mirrors, Mg2NiHx films show large changes in reflection that yield very low reflectance (high absorptance) at different hydrogen contents, far before reaching the semiconducting state. The resulting reflectance patterns are of interference origin, due to a self-organized layered hydrogenation mechanism that starts at the substrate interface, and can therefore be tuned by varying the film thickness. This tunability, together with the high absorptance contrast observed between the solar and the thermal energies, strongly suggests the use of these films in smart coatings for solar applications.Comment: Three two-column pages with 3 figures embedded; RevTE

    Surface state charge dynamics of a high-mobility three dimensional topological insulator

    Full text link
    We present a magneto-optical study of the three-dimensional topological insulator, strained HgTe using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.Comment: Published version, online Sept 23, 201

    Oxygen isotope effect and phase separation in the optical conductivity of (La0.5_{0.5}Pr0.5_{0.5})0.7_{0.7}Ca0.3_{0.3}MnO3_3 thin films

    Full text link
    The optical conductivities of films of (La0.5_{0.5}Pr0.5_{0.5})0.7_{0.7}Ca0.3_{0.3}MnO3_3 with different oxygen isotopes (16^{16}O and 18^{18}O) have been determined in the spectral range from 0.3 to 4.3 eV using a combination of transmission in the mid-infrared and ellipsometry from the near-infrared to ultra-violet regions. We have found that the isotope exchange strongly affects the optical response in the ferromagnetic phase in a broad frequency range, in contrast to the almost isotope-independent optical conductivity above TCT_C. The substitution by 18^{18}O strongly suppresses the Drude response and a mid-infrared peak while enhancing the conductivity peak at 1.5 eV. A qualitative explanation can be given in terms of the phase separation present in these materials. Moreover, the optical response is similar to the one extracted from measurements in polished samples and other thin films, which signals to the importance of internal strain.Comment: 11 pages, 11 figures, to appear in PR

    Software-recorded and self-reported duration of computer use in relation to the onset of severe arm–wrist–hand pain and neck–shoulder pain

    Get PDF
    Objectives: In both science and media, the adverse effects of a long duration of computer use at work on musculoskeletal health have long been debated. Until recently, the duration of computer use was mainly measured by self-reports, and studies using more objective measures, such as software-recorded computer duration, were lacking. The objective of this study was to examine the association between duration of computer use at work, measured with software and self-reports, and the onset of severe arm-wrist-hand and neck-shoulder symptoms. Methods: A 2-year follow-up study was conducted between 2004 and 2006 among 1951 office workers in The Netherlands. Self-reported computer duration and other risk factors were collected at baseline and at 1-year follow-up. Computer use at work was recorded continuously with computer software for 1009 participants. Outcome questionnaires were obtained at baseline and every 3 months during follow-up. Cases were identified based on the transition within 3 months of no or minor symptoms to severe symptoms. Results: Self-reported duration of computer use was positively associated with the onset of both arm-wrist-hand (RR 1.9, 95% CI 1.1 to 3.1 for more than 4 h/day of total computer use at work) and neck-shoulder symptoms (RR 1.5, 95% CI 1.1 to 2.0 for more than 4 h/day of mouse use at work). The recorded duration of computer use did not show any statistically significant association with the outcomes. Conclusions: In the present study, no association was found between the software-recorded duration of computer use at work and the onset of severe arm-wrist-hand and neck-shoulder symptoms using an exposure window of 3 months. In contrast, a positive association was found between the self-reported duration of computer use at work and the onset of severe arm-wrist-hand and neck-shoulder symptoms. The different findings for recorded and self-reported computer duration could not be explained satisfactorily
    corecore