5,960 research outputs found

    Reference priors for high energy physics

    Full text link
    Bayesian inferences in high energy physics often use uniform prior distributions for parameters about which little or no information is available before data are collected. The resulting posterior distributions are therefore sensitive to the choice of parametrization for the problem and may even be improper if this choice is not carefully considered. Here we describe an extensively tested methodology, known as reference analysis, which allows one to construct parametrization-invariant priors that embody the notion of minimal informativeness in a mathematically well-defined sense. We apply this methodology to general cross section measurements and show that it yields sensible results. A recent measurement of the single top quark cross section illustrates the relevant techniques in a realistic situation

    Counting States: A Combinatorial Analysis of SQM Fragmentation

    Full text link
    The Strange Quark matter (SQM) hypothesis states that at extreme pressure and density conditions a new ground state of matter would arise, in which half of the \textit{down} quarks become strange quarks. If true, it would mean that at least the core of neutron stars is made of SQM. In this hypothesis, SQM would be released in the inter-stellar medium when two of these objects merge. It is estimated that 10−2M⊙10^{-2} M\odot of SQM would be released this way. This matter will undergo a sequence of processes that should result in a fraction of the released SQM becoming heavy nuclei through \textit{r-process}. In this work we are interested in characterizing the fragmentation of SQM, with the novelty of keeping track of the \textit{quark configuration} of the fragmented matter. This is accomplished by developing a methodology to estimate the energy of each fragment as the sum of its \textit{constituent quarks}, the Coulomb interaction among the quarks and fragments' momenta. The determination of the fragmentation output is crucial to fully characterize the subsequent nucleosynthesis.Comment: 4 pages, 2 figures, 2 table

    Geometry of the energy landscape of the self-gravitating ring

    Full text link
    We study the global geometry of the energy landscape of a simple model of a self-gravitating system, the self-gravitating ring (SGR). This is done by endowing the configuration space with a metric such that the dynamical trajectories are identified with geodesics. The average curvature and curvature fluctuations of the energy landscape are computed by means of Monte Carlo simulations and, when possible, of a mean-field method, showing that these global geometric quantities provide a clear geometric characterization of the collapse phase transition occurring in the SGR as the transition from a flat landscape at high energies to a landscape with mainly positive but fluctuating curvature in the collapsed phase. Moreover, curvature fluctuations show a maximum in correspondence with the energy of a possible further transition, occurring at lower energies than the collapse one, whose existence had been previously conjectured on the basis of a local analysis of the energy landscape and whose effect on the usual thermodynamic quantities, if any, is extremely weak. We also estimate the largest Lyapunov exponent λ\lambda of the SGR using the geometric observables. The geometric estimate always gives the correct order of magnitude of λ\lambda and is also quantitatively correct at small energy densities and, in the limit N→∞N\to\infty, in the whole homogeneous phase.Comment: 20 pages, 12 figure

    Using a glass-fibre reinforced polymer composite in the production of sustainable water storage vessels

    Get PDF
    The quest for sustainability by rethinking materials, products and production strategies is an enormous challenge currently laid upon the economic sector. Materials selection plays a critical role in this challenge. The present work describes a technological, environmental and economic study of the production of a water storage glass-fibre reinforced composite vessel. The vessel was evaluated via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. The most significant life cycle phase was found to be the raw materials production, in which the Fossil fuels, Respiratory inorganics and Climate change were the relevant impact categories. The vessel environmental and economic performances could be improved if an end of life (EoL) option different from landfill had been chosen. The present work describes a new integrated way of analysing the environmental and economic performances of a structural product full life cycle. It also highlights the role and importance of fibre reinforced polymer composites in the quest for sustainable products.FCT projeto SFRH/BD/60852/2009 e IPC projeto UID/CTM/50025/201

    Myxomycete communities occurring in fragmented forest patches in two municipalities of Laguna, Philippines

    Get PDF
    In spite of the increasing number of myxomycete studies in the tropical Southeast Asia over the last decades, many forest patches are still left unexplored for the region, in particular in the Philippine archipelago. Thus, an assessment of myxomycete diversity, occurrence, and composition was carried out in forest fragments from two municipalities of the province of Laguna, Philippines. From the 12 established 5 m × 5 m plots, a total of 240 moist chamber cultures were prepared for this study and yielded 42 myxomycete species belonging to 14 genera. Rarefaction curves and several heterogeneity indices revealed higher species diversity in Los Baños than in Calauan. Moreover, the taxonomic diversity index also showed that the taxonomic diversity of myxomycete in Los Baños is more intuitively diverse than in Calauan. In terms of community analysis between the two municipalities, it showed that myxomycete communities clustered between different microhabitats. High values of coefficient of community and percentage similarity indices possibly implicates that spore dispersal in forest fragments in closer proximities may cause high number of shared species (60%). With an addition of Cribraria lepida as a new record for the country, this study now updates the myxomycete profile for Laguna, Philippines

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Σ\Sigma. Within the class of Filippov solutions, if Σ\Sigma is attractive, one should expect solution trajectories to slide on Σ\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Σ\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Σ\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Σ\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Σ\Sigma when Σ\Sigma is attractive, what to expect when Σ\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Σ\Sigma is attractive, a solution trajectory indeed does remain near Σ\Sigma, viz. sliding on Σ\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Σ\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Σ\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Σ\Sigma as long as Σ\Sigma is attractive, and so that it will be leaving (a neighborhood of) Σ\Sigma when Σ\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Σ\Sigma (or sliding motion on Σ\Sigma) should have been taking place.Comment: 19 figure

    Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering

    Full text link
    A direct measure of hydrogen bonding in water under conditions ranging from the normal state to the supercritical regime is derived from the Compton scattering of inelastically-scattered X-rays. First, we show that a measure of the number of electrons nen_e involved in hydrogen bonding at varying thermodynamic conditions can be directly obtained from Compton profile differences. Then, we use first-principles simulations to provide a connection between nen_e and the number of hydrogen bonds nHBn_{HB}. Our study shows that over the broad range studied the relationship between nen_e and nHBn_{HB} is linear, allowing for a direct experimental measure of bonding and coordination in water. In particular, the transition to supercritical state is characterized by a sharp increase in the number of water monomers, but also displays a significant number of residual dimers and trimers.Comment: 14 pages, 5 figures, 1 tabl
    • …
    corecore