1,032 research outputs found
Self-organized criticality in a rice-pile model
We present a new model for relaxations in piles of granular material. The
relaxations are determined by a stochastic rule which models the effect of
friction between the grains. We find power-law distributions for avalanche
sizes and lifetimes characterized by the exponents and
, respectively. For the discharge events, we find a
characteristic size that scales with the system size as , with . We also find that the frequency of the discharge events
decrease with the system size as with .Comment: 4 pages, RevTex, multicol, epsf, rotate (sty files provided). To
appear Phys. Rev. E Rapid Communication (Nov or Dec 96
Active Width at a Slanted Active Boundary in Directed Percolation
The width W of the active region around an active moving wall in a directed
percolation process diverges at the percolation threshold p_c as W \simeq A
\epsilon^{-\nu_\parallel} \ln(\epsilon_0/\epsilon), with \epsilon=p_c-p,
\epsilon_0 a constant, and \nu_\parallel=1.734 the critical exponent of the
characteristic time needed to reach the stationary state \xi_\parallel \sim
\epsilon^{-\nu_\parallel}. The logarithmic factor arises from screening of
statistically independent needle shaped sub clusters in the active region.
Numerical data confirm this scaling behaviour.Comment: 5 pages, 5 figure
Sow body condition at weaning and reproduction performance in organic piglet production
The objective was to investigate the variation in backfat at weaning and its relations to reproduction results in organic sow herds in Denmark. The study included eight herds and 573 sows. The average backfat at weaning mean�13 mm; SD�4.2 mm) ranging from 10.5 to 17.3 mm among herds shows that it is possible to avoid poor body condition at weaning even with a lactation length of seven weeks or more. No main effect of backfat at weaning on reproduction performance was found, but the probability of a successful reproduction after weaning tended to decrease with decreasing backfat for first parity sows, whereas the opposite was the case for multiparous sows
Universality classes for rice-pile models
We investigate sandpile models where the updating of unstable columns is done
according to a stochastic rule. We examine the effect of introducing nonlocal
relaxation mechanisms. We find that the models self-organize into critical
states that belong to three different universality classes. The models with
local relaxation rules belong to a known universality class that is
characterized by an avalanche exponent , whereas the models
with nonlocal relaxation rules belong to new universality classes characterized
by exponents and . We discuss the values
of the exponents in terms of scaling relations and a mapping of the sandpile
models to interface models.Comment: 4 pages, including 3 figure
Surface Critical Behavior in Systems with Non-Equilibrium Phase Transitions
We study the surface critical behavior of branching-annihilating random walks
with an even number of offspring (BARW) and directed percolation (DP) using a
variety of theoretical techniques. Above the upper critical dimensions d_c,
with d_c=4 (DP) and d_c=2 (BARW), we use mean field theory to analyze the
surface phase diagrams using the standard classification into ordinary,
special, surface, and extraordinary transitions. For the case of BARW, at or
below the upper critical dimension, we use field theoretic methods to study the
effects of fluctuations. As in the bulk, the field theory suffers from
technical difficulties associated with the presence of a second critical
dimension. However, we are still able to analyze the phase diagrams for BARW in
d=1,2, which turn out to be very different from their mean field analog.
Furthermore, for the case of BARW only (and not for DP), we find two
independent surface beta_1 exponents in d=1, arising from two distinct
definitions of the order parameter. Using an exact duality transformation on a
lattice BARW model in d=1, we uncover a relationship between these two surface
beta_1 exponents at the ordinary and special transitions. Many of our
predictions are supported using Monte-Carlo simulations of two different models
belonging to the BARW universality class.Comment: 19 pages, 12 figures, minor additions, 1 reference adde
Directed Percolation with a Wall or Edge
We examine the effects of introducing a wall or edge into a directed
percolation process. Scaling ansatzes are presented for the density and
survival probability of a cluster in these geometries, and we make the
connection to surface critical phenomena and field theory. The results of
previous numerical work for a wall can thus be interpreted in terms of surface
exponents satisfying scaling relations generalising those for ordinary directed
percolation. New exponents for edge directed percolation are also introduced.
They are calculated in mean-field theory and measured numerically in 2+1
dimensions.Comment: 14 pages, submitted to J. Phys.
Spectroscopy of Po
Prompt, in-beam rays following the reaction Yb + 142 MeV
Si were measured at the ATLAS facility using 10 Compton-suppressed Ge
detectors and the Fragment Mass Analyzer. Transitions in Po were
identified and placed using -ray singles and coincidence data gated on
the mass of the evaporation residues. A level spectrum up to
J10 was established. The structure of Po is more
collective than that observed in the heavier polonium isotopes and indicates
that the structure has started to evolve towards the more collective nature
expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques
- …