1,134 research outputs found
A line-binned treatment of opacities for the spectra and light curves from neutron star mergers
The electromagnetic observations of GW170817 were able to dramatically
increase our understanding of neutron star mergers beyond what we learned from
gravitational waves alone. These observations provided insight on all aspects
of the merger from the nature of the gamma-ray burst to the characteristics of
the ejected material. The ejecta of neutron star mergers are expected to
produce such electromagnetic transients, called kilonovae or macronovae.
Characteristics of the ejecta include large velocity gradients, relative to
supernovae, and the presence of heavy -process elements, which pose
significant challenges to the accurate calculation of radiative opacities and
radiation transport. For example, these opacities include a dense forest of
bound-bound features arising from near-neutral lanthanide and actinide
elements. Here we investigate the use of fine-structure, line-binned opacities
that preserve the integral of the opacity over frequency. Advantages of this
area-preserving approach over the traditional expansion-opacity formalism
include the ability to pre-calculate opacity tables that are independent of the
type of hydrodynamic expansion and that eliminate the computational expense of
calculating opacities within radiation-transport simulations. Tabular opacities
are generated for all 14 lanthanides as well as a representative actinide
element, uranium. We demonstrate that spectral simulations produced with the
line-binned opacities agree well with results produced with the more accurate
continuous Monte Carlo Sobolev approach, as well as with the commonly used
expansion-opacity formalism. Additional investigations illustrate the
convergence of opacity with respect to the number of included lines, and
elucidate sensitivities to different atomic physics approximations, such as
fully and semi-relativistic approaches.Comment: 27 pages, 22 figures. arXiv admin note: text overlap with
arXiv:1702.0299
Model Atmospheres for X-ray Bursting Neutron Stars
The hydrogen and helium accreted by X-ray bursting neutron stars is
periodically consumed in runaway thermonuclear reactions that cause the entire
surface to glow brightly in X-rays for a few seconds. With models of the
emission, the mass and radius of the neutron star can be inferred from the
observations. By simultaneously probing neutron star masses and radii, X-ray
bursts are one of the strongest diagnostics of the nature of matter at
extremely high densities. Accurate determinations of these parameters are
difficult, however, due to the highly non-ideal nature of the atmospheres where
X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar
can potentially place strong constraints on nuclear matter once uncertainties
in atmosphere models have been reduced. Here we discuss current progress on
modeling atmospheres of X-ray bursting neutron stars and some of the challenges
still to be overcome.Comment: 25 pages, 14 figure
Gamma-Ray Lines from Asymmetric Supernovae
We present 3-dimensional SPH simulations of supernova explosions from 100
seconds to 1 year after core-bounce. By extending our modelling efforts to a
3-dimensional hydrodynamics treatment, we are able to investigate the effects
of explosion asymmetries on mixing and gamma-ray line emergence in supernovae.
A series of initial explosion conditions are implemented, including jet-like
and equatorial asymmetries of varying degree. For comparison, symmetric
explosion models are also calculated. A series of time slices from the
explosion evolution are further analyzed using a 3-dimensional Monte Carlo
gamma-ray transport code. The emergent hard X- and gamma-ray spectra are
calculated as a function of both viewing angle and time, including trends in
the gamma-ray line profiles. We find significant differences in the velocity
distribution of radioactive nickel between the symmetric and asymmetric
explosion models. The effects of this spatial distribution change are reflected
in the overall high energy spectrum, as well as in the individual gamma-ray
line profiles.Comment: 32 pages, 14 figures, LAUR-02-6114, http://qso.lanl.gov/~clf
"Clumping Asymmetry" section revise
The Computer in High School Science Instruction
Computers appear to have a useful function in futuristic science classrooms. Urquhart states, computers have a promising future as an instructional tool in biology. The purpose for utilizing computers as supplements to standard educational media is to simulate complex situations or demonstrate complex concepts that would be impractical to duplicate in classrooms due to time consuming computations, expense, or lack of equipment
Gamma-Rays from Single Lobe Supernova Explosions
Multi-dimensional simulations of the neutrino-driven mechanism behind
core-collapse supernovae have long shown that the explosions from this
mechanism would be asymmetric. Recently, detailed core-collapse simulations
have shown that the explosion may be strongest in a single direction. We
present a suite of simulations modeling these ``single-lobe'' supernova
explosions of a 15 solar mass red supergiant star, focusing on the effect these
asymmetries have on the gamma-ray emission and the mixing in the explosion. We
discuss how asymmetries in the explosion mechanism might explain many of the
observed ``asymmetries'' of supernovae, focusing on features of both supernova
1987A and the Cas A supernova remnant. In particular, we show that single-lobe
explosions provide a promising solution to the redshifted iron lines of
supernova 1987A. We also show that the extent of mixing for explosive burning
products depends sensitively on the angular profile of the velocity asymmetry
and can be much more extensive than previously assumed.Comment: 39 pages, 18 figures, submitted to ApJ Version with high resolution
figures can be found at http://qso.lanl.gov/~cl
- …