169 research outputs found

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    Impurity correlations in dilute Kondo alloys

    Full text link
    The single impurity Kondo model is often used to describe metals with dilute concentrations (n_i) of magnetic impurities. Here we examine how dilute the impurities must be for this to be valid by developing a virial expansion in impurity density. The O(n_i^2) term is determined from results on the 2-impurity Kondo problem by averaging over the RKKY coupling. The non-trivial fixed point of the 2-impurity problem could produce novel singularities in the heat capacity of dilute alloys at O(n_i^2).Comment: 6 pages, no figure

    RKKY interaction and Kondo screening cloud for correlated electrons

    Full text link
    The RKKY law and the Kondo screening cloud around a magnetic impurity are investigated for correlated electrons in 1D (Luttinger liquid). We find slow algebraic distance dependences, with a crossover between both types of behavior. Monte Carlo simulations have been developed to study this crossover. In the strong coupling regime, the Knight shift is shown to increase with distance due to correlations.Comment: 5 pages REVTeX, incl two figures, to appear in Phys.Rev.

    Multi-Orbital Hubbard Model in Infinite Dimensions: Quantum Monte Carlo Calculation

    Full text link
    Using Quantum Monte Carlo we compute thermodynamics and spectra for the orbitally degenerate Hubbard model in infinite spatial dimensions. With increasing orbital degeneracy we find in the one-particle spectra: broader Hubbard bands (consistent with increased kinetic energy), a narrowing Mott gap, and increasing quasi-particle spectral weight. In opposition, Hund's rule exchange coupling decreases the critical on-site Coulomb energy for the Mott transition. The metallic regime resistivity for two-fold degeneracy is quadratic-in-temperature at low temperatures.Comment: 4 pages, 4 figures, to be published in PR

    Exact Quantum Monte Carlo Process for the Statistics of Discrete Systems

    Get PDF
    We introduce an exact Monte Carlo approach to the statistics of discrete quantum systems which does not rely on the standard fragmentation of the imaginary time, or any small parameter. The method deals with discrete objects, kinks, representing virtual transitions at different moments of time. The global statistics of kinks is reproduced by explicit local procedures, the key one being based on the exact solution for the biased two-level system.Comment: 4 pages, latex, no figures, English translation of the paper

    Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model

    Full text link
    We present a detailed numerical study of spin and charge dynamics of the two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J > 0, the competition between the RKKY interaction and Kondo effect triggers a quantum phase transition between magnetically ordered and disordered insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega), evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi) to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation following that of hybridized bands. For J < J_c this feature is supplemented by shadows thus pointing to a coexistence of Kondo screening and magnetism. For J < 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For weak to intermediate couplings, T_S marks the onset of antiferromagnetic fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C scales as J both at weak and strong couplings. At and slightly below T_C we observe i) a rise in the resistivity as a function of decreasing temperature, ii) a dip in the integrated density of states at the Fermi energy and iii) the occurrence of hybridized bands in A(k,\omega). It is shown that in the weak coupling limit, the charge gap of order J is of magnetic origin. The specific heat shows a two peak structure, the low temperature peak being of magnetic origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure

    Phase Diagram of the Two-Channel Kondo Lattice

    Full text link
    The phase diagram of the two-channel Kondo lattice model is examined with a Quantum Monte Carlo simulation in the limit of infinite dimensions. Commensurate (and incommensurate) antiferromagnetic and superconducting states are found. The antiferromagnetic transition is very weak and continuous; whereas the superconducting transition is discontinuous to an odd-frequency channel-singlet and spin-singlet pairing state.Comment: 5 pages, LaTeX and 4 PS figures (see also cond-mat/9609146 and cond-mat/9605109

    Universal Conductivity in the Two dimensional Boson Hubbard Model

    Full text link
    We use Quantum Monte Carlo to evaluate the conductivity σ\sigma of the 2--dimensional disordered boson Hubbard model at the superfluid-bose glass phase boundary. At the critical point for particle density ρ=0.5\rho=0.5, we find σc=(0.45±0.07)σQ\sigma_{c}=(0.45 \pm 0.07) \sigma_{Q}, where σQ=e2/h\sigma_{Q}= e_{*}^{2} / h from a finite size scaling analysis of the superfluid density. We obtain σc=(0.47±0.08)σQ\sigma_{c}=(0.47 \pm 0.08) \sigma_{Q} from a direct calculation of the current--current correlation function. Simulations at the critical points for other particle densities, ρ=0.75\rho=0.75 and 1.01.0, give similar values for σ\sigma. We discuss possible origins of the difference in this value from that recently obtained by other numerical approaches.Comment: 20 pages, figures available upon request. Tex with jnl3.tex and reforder.tex macros. cond-mat/yymmnn

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    Fine Structure and Fractional Aharonov-Bohm Effect

    Full text link
    We find a fine structure in the Aharonov-Bohm effect, characterized by the appearence of a new type of periodic oscillations having smaller fractional period and an amplitude, which may compare with the amplitude of the conventional Aharonov-Bohm effect. Specifically, at low density or strong coupling on a Hubbard ring can coexist along with the conventional Aaronov-Bohm oscillations with the period equal to an integer, measured in units of the elementary flux quantum, two additional oscillations with periods 1/N1/N and M/NM/N. The integers NN and MM are the particles number and the number of down-spin particles, respectively. {}From a solution of the Bethe ansatz equations for NN electrons located on a ring in a magnetic field we show that the fine structure is due to electron-electron and Zeeman interactions. Our results are valid in the dilute density limit and for an arbitrary value of the Hubbard repulsion UUComment: 40 pages (Latex,Revtex) 12 figures by request, in Technical Reports of ISSP , Ser. A, No.2836 (1994
    corecore