22 research outputs found

    SUMO-Targeted Ubiquitin Ligase, Rad60, and Nse2 SUMO Ligase Suppress Spontaneous Top1–Mediated DNA Damage and Genome Instability

    Get PDF
    Through as yet undefined proteins and pathways, the SUMO-targeted ubiquitin ligase (STUbL) suppresses genomic instability by ubiquitinating SUMO conjugated proteins and driving their proteasomal destruction. Here, we identify a critical function for fission yeast STUbL in suppressing spontaneous and chemically induced topoisomerase I (Top1)–mediated DNA damage. Strikingly, cells with reduced STUbL activity are dependent on tyrosyl–DNA phosphodiesterase 1 (Tdp1). This is notable, as cells lacking Tdp1 are largely aphenotypic in the vegetative cell cycle due to the existence of alternative pathways for the removal of covalent Top1–DNA adducts (Top1cc). We further identify Rad60, a SUMO mimetic and STUbL-interacting protein, and the SUMO E3 ligase Nse2 as critical Top1cc repair factors in cells lacking Tdp1. Detection of Top1ccs using chromatin immunoprecipitation and quantitative PCR shows that they are elevated in cells lacking Tdp1 and STUbL, Rad60, or Nse2 SUMO ligase activity. These unrepaired Top1ccs are shown to cause DNA damage, hyper-recombination, and checkpoint-mediated cell cycle arrest. We further determine that Tdp1 and the nucleotide excision repair endonuclease Rad16-Swi10 initiate the major Top1cc repair pathways of fission yeast. Tdp1-based repair is the predominant activity outside S phase, likely acting on transcription-coupled Top1cc. Epistasis analyses suggest that STUbL, Rad60, and Nse2 facilitate the Rad16-Swi10 pathway, parallel to Tdp1. Collectively, these results reveal a unified role for STUbL, Rad60, and Nse2 in protecting genome stability against spontaneous Top1-mediated DNA damage

    Directing quadruplex-stabilizing drugs to the telomere: Synthesis and properties of acridine - Oligonucleotide conjugates

    No full text
    Conjugates containing quadruplex-stabilizing acridines linked to oligonucleotides that are complementary to the G-rich human telomere sequence were synthesized. Acylation of 3,6-diaminoacridine followed by two Michael reactions provided derivatives suitable for conjugation, which were coupled to resin-linked amine-modified oligonucleotides by activating the carboxyl group with pentafluorophenyl 4-nitrobenzenesulfonate. After deprotection with aqueous ammonia at room temperature, conjugates incorporating different acridines, linkers, and oligonucleotide sequences were obtained. These were tested for their ability to stabilize intramolecular DNA quadruplexes that are based on the human telomeric repeat sequence (GGGTTA)n

    Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage

    No full text
    Agents targeting topoisomerases are active against a wide range of human tumors. Stabilization of covalent complexes, converting topoisomerases into DNA-damaging agents, is an essential aspect of cell killing by these drugs. A unique aspect of the repair of topoisomerase-mediated DNA damage is the requirement for pathways that can remove protein covalently bound to DNA. Tyrosyl-DNA phosphodiesterase (Tdp1) is an enzyme that removes phosphotyrosyl moieties bound to the 3′ end of DNA. Cells lacking Tdp1 are hypersensitive to camptothecin, consistent with a role for Tdp1 in processing 3′ phosphotyrosyl protein–DNA covalent complexes. Because Top2p forms a 5′ phosphotyrosyl linkage with DNA, previous work predicted that Tdp1p would not be active against lesions involving Top2p. We found that deletion of the TDP1 gene in yeast confers hypersensitivity to Top2 targeting agents. Combining tdp1 mutations with deletions of genes involved in nonhomologous end joining, excision repair, or postreplication repair enhanced sensitivity to Top2 targeting drugs over the level seen with single mutants, suggesting that Tdp1 may function in collaboration with multiple pathways involved in strand break repair. tdp1 mutations can sensitize yeast cells to drugs targeting Top2 even when TOP1 is deleted. Finally, bacterially expressed yeast Tdp1p is able to remove a peptide derived from yTop2 that is covalently bound to DNA by a 5′ phosphotyrosyl linkage. Our results show that Tdp1 plays more general roles in DNA repair than repair of Top1 mediated DNA damage, and may participate in repairing many types of base damage to DNA

    An update to the HIV-TRePS system: The development and evaluation of new global and local computational models to predict HIV treatment outcomes, with or without a genotype

    No full text
    Objectives: Optimizing antiretroviral drug combination on an individual basis in resource-limited settings is challenging because of the limited availability of drugs and genotypic resistance testing. Here, we describe our latest computational models to predict treatment responses, with or without a genotype, and compare the potential utility of global and local models as a treatment tool for South Africa. Methods: Global random forest models were trained to predict the probability of virological response to therapy following virological failure using 29 574 treatment change episodes (TCEs) without a genotype, 3179 of which were from South Africa and were used to develop local models. In addition, 15 130 TCEs including genotypes were used to develop another set of models. The 'no-genotype' models were tested with an independent global test set (n = 1700) plus a subset from South Africa (n = 222). The genotype models were tested with 750 independent cases. Results: The global no-genotype models achieved area under the receiver-operating characteristic curve (AUC) values of 0.82 and 0.79 with the global and South African tests sets, respectively, and the South African models achieved AUCs of 0.70 and 0.79. The genotype models achieved an AUC of 0.84. The global no-genotype models identified more alternative, locally available regimens that were predicted to be effective for cases that failed their new regimen in the South African clinics than the local models. Both sets of models were significantly more accurate predictors of outcomes than genotyping with rules-based interpretation. Conclusions: These latest global models predict treatment responses accurately even without a genotype, out-performed the local South African models and have the potential to help optimize therapy, particularly in resource-limited settings

    Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell

    Full text link
    Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or &ldquo;thermocells&rdquo;). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.<br /
    corecore