78,875 research outputs found

    A primer on the mortgage market and mortgage finance

    Get PDF
    This article is a primer on mortgage finance. It discusses the basics of the mortgage market and mortgage finance. In so doing, it provides useful information that can aid individuals in making better mortgage finance decisions. The discussion and the tools are presented within the context of mortgage finance; however, these same principles and tools can be applied to a wide range of financial decisions.Mortgages

    Gravitational lensing by elliptical galaxies

    Full text link
    The fraction of high-redshift sources which are multiply-imaged by intervening galaxies is strongly dependent on the cosmological constant, and so can be a useful probe of the cosmological model. However its power is limited by various systematic (and random) uncertainties in the calculation of lensing probabilities, one of the most important of which is the dynamical normalisation of elliptical galaxies. Assuming ellipticals' mass distributions can be modelled as isothermal spheres, the mass normalisation depends on: the velocity anisotropy; the luminosity density; the core radius; and the area over which the velocity dispersion is measured. The differences in the lensing probability and optical depth produced by using the correct normalisation can be comparable to the differences between even the most extreme cosmological models. The existing data is not sufficient to determine the correct normalisation with enough certainty to allow lensing statistics to be used to their full potential. However, as the correct lensing probability is almost certainly higher than is usually assumed, upper bounds on the cosmological constant are not weakened by these possibilities.Comment: MNRAS, in press; 13 pages, 22 figure

    Enhancing Light-Atom Interactions via Atomic Bunching

    Get PDF
    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here, we show theoretically that sub-Doppler-cooled, two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonant saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all atomic temperature regimes and simultaneously accounts for the back-action of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only a limited range of temperatures. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices

    Gravitational lensing in galaxy redshift surveys

    Get PDF
    Gravitationally-lensed quasars should be discovered as a by-product of large galaxy redshift surveys, being discovered spectroscopically when a low-redshift galaxy exhibits high-redshift quasar emission lines. The number of lenses expected is higher than previously estimated, mainly due to the fact that the presence of the quasar images brings faint deflector galaxies above the survey limit. Thus the a posteriori likelihood of the discovery of Q 2237+0305 in the Center for Astrophysics redshift survey is approximately 0.03. In the future, the 2 degree Field survey should yield at least 10 lensed quasars, and the Sloan Digitial Sky Survey up to 100.Comment: Gravitational Lensing: Recent Progress and Future Goals, C.S. Kochanek & T.G. Brainerd, eds., in press; 2 pages, 1 figur

    Gravitational lensing in modified Newtonian dynamics

    Full text link
    Modified Newtonian dynamics (MOND) is an alternative theory of gravity that aims to explain large-scale dynamics without recourse to any form of dark matter. However the theory is incomplete, lacking a relativistic counterpart, and so makes no definite predictions about gravitational lensing. The most obvious form that MONDian lensing might take is that photons experience twice the deflection of massive particles moving at the speed of light, as in general relativity (GR). In such a theory there is no general thin-lens approximation (although one can be made for spherically-symmetric deflectors), but the three-dimensional acceleration of photons is in the same direction as the relativistic acceleration would be. In regimes where the deflector can reasonably be approximated as a single point-mass (specifically low-optical depth microlensing and weak galaxy-galaxy lensing), this naive formulation is consistent with observations. Forthcoming galaxy-galaxy lensing data and the possibility of cosmological microlensing have the potential to distinguish unambiguously between GR and MOND. Some tests can also be performed with extended deflectors, for example by using surface brightness measurements of lens galaxies to model quasar lenses, although the breakdown of the thin-lens approximation allows an extra degree of freedom. Nonetheless, it seems unlikely that simple ellipsoidal galaxies can explain both constraints. Further, the low-density universe implied by MOND must be completely dominated by the cosmological constant (to fit microwave background observations), and such models are at odds with the low frequency of quasar lenses. These conflicts might be resolved by a fully consistent relativistic extension to MOND; the alternative is that MOND is not an accurate description of the universe.Comment: MNRAS, in press; 11 pages, 10 figure

    Approaches to Faith, Guest Editorial Preface

    Get PDF
    Springer. We find in contemporary culture starkly contrasting estimates of the value of faith. On the one hand, for many people, faith is a virtue or positive human value, something associated with understanding, hope, and love, something to be inculcated, maintained, and cherished. On the other hand, for many people, faith is a vice, something associated with dogmatism, arrogance, and close-mindedness, something to be avoided at all costs. The papers included in this special (double) issue on approaches to faith explore questions about faith in a variety of settings through a diverse range of examples, both secular and religious. The attempt to deepen our understanding of faith in the context of ordinary human relationships (e.g., between parents and children, friends, generals and their armies, business partners, citizens and the state), a commitment to ideals, or the pursuit of significant goals is clearly of general philosophical interest, as is the examination of potential connections between faith and topics such as trust or reliance

    Using the 2dF galaxy redshift survey to detect gravitationally-lensed quasars

    Full text link
    Galaxy redshift surveys can be used to detect gravitationally-lensed quasars if the spectra obtained are searched for the quasars' emission lines. Previous investigations of this possibility have used simple models to show that the 2 degree Field (2dF) redshift survey could yield several tens of new lenses, and that the larger Sloan Digital Sky Survey should contain an order of magnitude more. However the particular selection effects of the samples were not included in these calculations, limiting the robustness of the predictions; thus a more detailed simulation of the 2dF survey was undertaken here. The use of an isophotal magnitude limit reduces both the depth of the sample and the expected number of lenses, but more important is the Automatic Plate Measuring survey's star-galaxy separation algorithm, used to generate the 2dF input catalogue. It is found that most quasar lenses are classed as merged stars, with only the few lenses with low-redshift deflectors likely to be classified as galaxies. Explicit inclusion of these selection effects implies that the 2dF survey should contain 10 lenses on average. The largest remaining uncertainty is the lack of knowledge of the ease with which any underlying quasars can be extracted from the survey spectra.Comment: MNRAS, in press; 14 pages, 19 figure

    Closing the Loop: Creating Deliverables That Add Value

    Get PDF
    As special collections librarians and liaison librarians work together to create in­novative experiences working with primary source material, it is important to remember students have much to offer in the collaborative design process. In this case study, Prudence Doherty, a special collections librarian, and Daniel DeSanto, an instruction librarian, describe a project they initiated and implemented with upper-level education majors at the University of Vermont (UVM). The students were pre-service teachers (student teachers working toward degree and licensure) enrolled in Social Education and Social Studies, a course that focuses on teaching methods, assessment alternatives, and resources used in the elementary (K–4) classroom. The project gave the pre-service teachers an opportunity to work with three digital collections in order to design lesson plans for elementary-aged stu­dents. The project closed the loop of learn, create, and teach by requiring students to learn evaluative approaches to working with historical material and then create lesson plans based on those approaches. By creating professional resources for other teachers, the students added value to the digital collections
    • …
    corecore