9,501 research outputs found
Collider phenomenology of vector resonances in WZ scattering processes
We study the production of vector resonances at the LHC via scattering
processes and explore the sensitivities to these resonances for the expected
future LHC luminosities. The electroweak chiral Lagrangian and the Inverse
Amplitude Method (IAM) are used for analyzing a dynamically generated vector
resonance, whose origin would be the (hypothetically strong) self interactions
of the longitudinal gauge bosons, and . We implement the unitarized
scattering amplitudes into a single model, the IAM-MC, that has been adapted to
MadGraph~5. It is written in terms of the electroweak chiral Lagrangian and an
additional effective Proca Lagrangian for the vector resonances, so that it
reproduces the resonant behavior of the IAM and allows us to perform a
realistic study of signal versus background at the LHC. We focus on the channel, discussing first on the potential of the hadronic and
semileptonic channels of the final , and next exploring in more detail the
clearest signals. These are provided by the leptonic decays of the gauge
bosons, leading to a final state with , ,
having a very distinctive signature, and showing clearly the emergence of the
resonances with masses in the range of -, which we have
explored.Comment: 8 pages, 5 figures, contributed to the XIII Quark Confinement and the
Hadron Spectrum - Confinement2018, 31 July - 6 August 2018, Maynooth
University, Irelan
Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis
In the present work we study the production of vector resonances at the LHC
by means of the vector boson scattering and explore the
sensitivities to these resonances for the expected future LHC luminosities. We
are assuming that these vector resonances are generated dynamically from the
self interactions of the longitudinal gauge bosons, and , and work
under the framework of the electroweak chiral Lagrangian to describe in a model
independent way the supposedly strong dynamics of these modes. The properties
of the vector resonances, mass, width and couplings to the and gauge
bosons are derived from the inverse amplitude method approach. We implement all
these features into a single model, the IAM-MC, adapted for MonteCarlo, built
in a Lagrangian language in terms of the electroweak chiral Lagrangian and a
chiral Lagrangian for the vector resonances, which mimics the resonant behavior
of the IAM and provides unitary amplitudes. The model has been implemented in
MadGraph, allowing us to perform a realistic study of the signal versus
background events at the LHC. In particular, we have focused our study on the
type of events, discussing first on the potential of the hadronic
and semileptonic channels of the final , and next exploring in more detail
the clearest signals. These are provided by the leptonic decays of the gauge
bosons, leading to a final state with ,
, having a very distinctive signature, and showing clearly the
emergence of the resonances with masses in the range of 1.5-2.5 TeV, which we
have explored.Comment: Revised version accepted for publication in JHEP. Enlarged analysis.
References added. 44 pages, 23 figures, 3 table
Setting up tunneling conditions by means of Bohmian mechanics
Usually tunneling is established after imposing some matching conditions on
the (time-independent) wave function and its first derivative at the boundaries
of a barrier. Here an alternative scheme is proposed to determine tunneling and
estimate transmission probabilities in time-dependent problems, which takes
advantage of the trajectory picture provided by Bohmian mechanics. From this
theory a general functional expression for the transmission probability in
terms of the system initial state can be reached. This expression is used here
to analyze tunneling properties and estimate transmissions in the case of
initial Gaussian wave packets colliding with ramp-like barriers.Comment: 18 pages, 4 figure
Neural networks and separation of Cosmic Microwave Background and astrophysical signals in sky maps
The Independent Component Analysis (ICA) algorithm is implemented as a neural
network for separating signals of different origin in astrophysical sky maps.
Due to its self-organizing capability, it works without prior assumptions on
the signals, neither on their frequency scaling, nor on the signal maps
themselves; instead, it learns directly from the input data how to separate the
physical components, making use of their statistical independence. To test the
capabilities of this approach, we apply the ICA algorithm on sky patches, taken
from simulations and observations, at the microwave frequencies, that are going
to be deeply explored in a few years on the whole sky, by the Microwave
Anisotropy Probe (MAP) and by the {\sc Planck} Surveyor Satellite. The maps are
at the frequencies of the Low Frequency Instrument (LFI) aboard the {\sc
Planck} satellite (30, 44, 70 and 100 GHz), and contain simulated astrophysical
radio sources, Cosmic Microwave Background (CMB) radiation, and Galactic
diffuse emissions from thermal dust and synchrotron. We show that the ICA
algorithm is able to recover each signal, with precision going from 10% for the
Galactic components to percent for CMB; radio sources are almost completely
recovered down to a flux limit corresponding to , where
is the rms level of CMB fluctuations. The signal recovering
possesses equal quality on all the scales larger then the pixel size. In
addition, we show that the frequency scalings of the input signals can be
partially inferred from the ICA outputs, at the percent precision for the
dominant components, radio sources and CMB.Comment: 15 pages; 6 jpg and 1 ps figures. Final version to be published in
MNRA
- …