21,611 research outputs found

    Isospin and density dependences of nuclear matter symmetry energy coefficients II

    Full text link
    Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter at variable densities (from .5ρ0\rho_0 up to 2 ρ0\rho_0) are studied as generalized screening functions. An extended stability condition for asymmetric nuclear matter is proposed. We find the possibility of obtaining stable asymmetric nuclear matter even in some cases for which the symmetric nuclear matter limit is unstable. Skyrme-type forces are extensively used in analytical expressions of the symmetry energy coefficients derived as generalized screening functions in the four channels of the particle hole interaction producing alternative behaviors at different ρ\rho and bb (respectively the density and the asymmetry coefficient). The spin and spin-isospin coefficients, with corrections to the usual Landau Migdal parameters, indicate the possibility of occurring instabilities with common features depending on the nuclear density and n-p asymmetry. Possible relevance for high energy heavy ions collisions and astrophysical objects is discussed.Comment: 16 pages (latex) plus twelve figures in four eps files, to be published in I.J.M.P.

    Self-referential cognition and empathy in autism.

    Get PDF
    BACKGROUND: Individuals with autism spectrum conditions (ASC) have profound impairments in the interpersonal social domain, but it is unclear if individuals with ASC also have impairments in the intrapersonal self-referential domain. We aimed to evaluate across several well validated measures in both domains, whether both self-referential cognition and empathy are impaired in ASC and whether these two domains are related to each other. METHODOLOGY/PRINCIPAL FINDINGS: Thirty adults aged 19-45, with Asperger Syndrome or high-functioning autism and 30 age, sex, and IQ matched controls participated in the self-reference effect (SRE) paradigm. In the SRE paradigm, participants judged adjectives in relation to the self, a similar close other, a dissimilar non-close other, or for linguistic content. Recognition memory was later tested. After the SRE paradigm, several other complimentary self-referential cognitive measures were taken. Alexithymia and private self-consciousness were measured via self-report. Self-focused attention was measured on the Self-Focus Sentence Completion task. Empathy was measured with 3 self-report instruments and 1 performance measure of mentalizing (Eyes test). Self-reported autistic traits were also measured with the Autism Spectrum Quotient (AQ). Although individuals with ASC showed a significant SRE in memory, this bias was decreased compared to controls. Individuals with ASC also showed reduced memory for the self and a similar close other and also had concurrent impairments on measures of alexithymia, self-focused attention, and on all 4 empathy measures. Individual differences in self-referential cognition predicted mentalizing ability and self-reported autistic traits. More alexithymia and less self memory was predictive of larger mentalizing impairments and AQ scores regardless of diagnosis. In ASC, more self-focused attention is associated with better mentalizing ability and lower AQ scores, while in controls, more self-focused attention is associated with decreased mentalizing ability and higher AQ scores. Increasing private self-consciousness also predicted better mentalizing ability, but only for individuals with ASC. CONCLUSIONS/SIGNIFICANCE: We conclude that individuals with ASC have broad impairments in both self-referential cognition and empathy. These two domains are also intrinsically linked and support predictions made by simulation theory. Our results also highlight a specific dysfunction in ASC within cortical midlines structures of the brain such as the medial prefrontal cortex

    Using machine learning to classify the diffuse interstellar bands

    Full text link
    Using over a million and a half extragalactic spectra we study the correlations of the Diffuse Interstellar Bands (DIBs) in the Milky Way. We measure the correlation between DIB strength and dust extinction for 142 DIBs using 24 stacked spectra in the reddening range E(B-V) < 0.2, many more lines than ever studied before. Most of the DIBs do not correlate with dust extinction. However, we find 10 weak and barely studied DIBs with correlations that are higher than 0.7 with dust extinction and confirm the high correlation of additional 5 strong DIBs. Furthermore, we find a pair of DIBs, 5925.9A and 5927.5A which exhibits significant negative correlation with dust extinction, indicating that their carrier may be depleted on dust. We use Machine Learning algorithms to divide the DIBs to spectroscopic families based on 250 stacked spectra. By removing the dust dependency we study how DIBs follow their local environment. We thus obtain 6 groups of weak DIBs, 4 of which are tightly associated with C2 or CN absorption lines.Comment: minor changes, MNRAS accepte

    A Study of Compact Radio Sources in Nearby Face-on Spiral Galaxies. II. Multiwavelength Analyses of Sources in M51

    Get PDF
    We report the analysis of deep radio observations of the interacting galaxy system M51 from the Very Large Array, with the goal of understanding the nature of the population of compact radio sources in nearby spiral galaxies. We detect 107 compact radio sources, 64% of which have optical counterparts in a deep Hα\alpha Hubble Space Telescope image. Thirteen of the radio sources have X-ray counterparts from a {\em Chandra} observation of M51. We find that six of the associated Hα\alpha sources are young supernova remnants with resolved shells. Most of the SNRs exhibit steep radio continuum spectral indices onsistent with synchrotron emission. We detect emission from the Type Ic SN 1994I nearly a decade after explosion: the emission (160±22μ160\pm22 \muJy beam1^{-1} at 20 cm, 46±11μ46\pm11 \muJy beam1^{-1} at 6cm, α=1.02±0.28\alpha=-1.02\pm0.28) is consistent with light curve models for Type Ib/Ic supernovae. We detect X-ray emission from the supernova, however no optical counterpart is present. We report on the analysis of the Seyfert 2 nucleus in this galaxy, including the evidence for bipolar outflows from the central black hole.Comment: 22 pages, 8 figures (5 color) in separate files, AASTeX. Full resolution figures and preprint may be obtained by contacting [email protected]. AJ accepte

    Whispering Gallery States of Antihydrogen

    Full text link
    We study theoretically interference of the long-living quasistationary quantum states of antihydrogen atoms, localized near a concave material surface. Such states are an antimatter analog of the whispering gallery states of neutrons and matter atoms, and similar to the whispering gallery modes of sound and electro-magnetic waves. Quantum states of antihydrogen are formed by the combined effect of quantum reflection from van der Waals/Casimir-Polder (vdW/CP) potential of the surface and the centrifugal potential. We point out a method for precision studies of quantum reflection of antiatoms from vdW/CP potential; this method uses interference of the whispering gallery states of antihydrogen.Comment: 13 pages 7 figure

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. )^\ast) By sublinear we mean O(n1ε)O(n^{1-\varepsilon}) for some ε>0\varepsilon>0, where nn is the size of the active domain of the current database

    Beyond Worst-Case Analysis for Joins with Minesweeper

    Full text link
    We describe a new algorithm, Minesweeper, that is able to satisfy stronger runtime guarantees than previous join algorithms (colloquially, `beyond worst-case guarantees') for data in indexed search trees. Our first contribution is developing a framework to measure this stronger notion of complexity, which we call {\it certificate complexity}, that extends notions of Barbay et al. and Demaine et al.; a certificate is a set of propositional formulae that certifies that the output is correct. This notion captures a natural class of join algorithms. In addition, the certificate allows us to define a strictly stronger notion of runtime complexity than traditional worst-case guarantees. Our second contribution is to develop a dichotomy theorem for the certificate-based notion of complexity. Roughly, we show that Minesweeper evaluates β\beta-acyclic queries in time linear in the certificate plus the output size, while for any β\beta-cyclic query there is some instance that takes superlinear time in the certificate (and for which the output is no larger than the certificate size). We also extend our certificate-complexity analysis to queries with bounded treewidth and the triangle query.Comment: [This is the full version of our PODS'2014 paper.

    Radicalar probes to measure the action of energy on granular materials

    Get PDF
    International audienceMeasuring the action of energy on matter is a complex problem, especially in the case of granular materials. For example, particle size reduction by grinding generally shows poor overall energetic yields and a significant challenge in this area is to accurately estimate the energy consumed, including that stored in the particles. Fine or ultra-fine grinding processes require a lot of energy, part of which becomes internal energy and can lead to mechanochemical reactions and useful products. We studied the appearance of free radicals during the grinding of a-lactose monohydrate by means of electron spin resonance (ESR). These radicals are the same as those induced by gamma-radiation and comparison of ESR spectra intensities with those from ground products allows the determination of an `equivalent gamma-irradiation dose'. This gives a novel concept for characterizing the action of mechanical energy on matter in fine grinding by using molecular probes. This is the first example of the investigation of mechanochemical energy during the fine grinding process

    New assays for carbamyl phosphate synthetase applicable in the presence of exogenous carbamyl phosphate.

    Get PDF
    New assays for carbamyl phosphate synthetase applicable in the presence of exogenous carbamyl phosphate
    corecore