651 research outputs found
Effect of vasopressin 1b receptor blockade on the hypothalamic-pituitary-adrenal response of chronically stressed rats to a heterotypic stressor
Exposure to chronic restraint (CR) modifies the hypothalamic–pituitary–adrenal (HPA) axis response to subsequent acute stressors with adaptation of the response to a homotypic and sensitization of the response to a heterotypic stressor. Since vasopressin (AVP) activity has been reported to change during chronic stress, we investigated whether this was an important factor in HPA facilitation. We therefore tested whether vasopressin 1b receptor (AVPR1B) blockade altered the ACTH and corticosterone response to heterotypic stressors following CR stress. Adult male rats were exposed to CR, single restraint, or were left undisturbed in the home cage. Twenty-four hours after the last restraint, rats were injected with either a AVPR1B antagonist (Org, 30 mg/kg, s.c.) or vehicle (5% mulgofen in saline, 0.2/kg, s.c.) and then exposed to either restraint, lipopolysaccharide (LPS) or white noise. CR resulted in the adaptation of the ACTH and corticosterone response to restraint and this effect was not prevented by pretreatment with Org. Although we found no effect of CR on LPS-induced ACTH and corticosterone secretion, both repeated and single episodes of restraint induced the sensitization of the ACTH, but not corticosterone response to acute noise. Pretreatment with Org reduced the exaggerated ACTH response to noise after both single and repeated exposure to restraint
Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage
We have laterally patterned the narrowest conducting wires of two-dimensional electron gas (2DEG) material reported to date. The depletion induced by low-energy ion etching of GaAs-AlGaAs 2DEG structures was used to define narrow conducting channels. We employed high voltage electron beam lithography to create a range of channel geometries with widths as small as 75 nm. Using ion beam assisted etching by Cl2 gas and Ar ions with energies as low as 150 eV, conducting channels were defined by etching only through the thin GaAs cap layer. This slight etching is sufficient to entirely deplete the underlying material without necessitating exposure of the sidewalls that results in long lateral depletion lengths. At 4.2 K, without illumination, our narrowest wires retain a carrier density and mobility at least as high as that of the bulk 2DEG and exhibit quantized Hall effects. Aharonov–Bohm oscillations are seen in rings defined by this controlled etch-damage patterning. This patterning technique holds promise for creating one-dimensional conducting wires of even smaller sizes
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Low-density Lipoprotiens, Body Mass Index, and the Female Sex Are Predictors of Reduced Cutaenous Reactive Hyperemia In Human Skin
Please view abstract in the attached PDF file
Effect of the glucocorticoid receptor antagonist Org 34850 on fast and delayed feedback of corticosterone release
We investigated the effect of the glucocorticoid receptor (GR) antagonist Org 34850 on fast and delayed inhibition of corticosterone secretion in response to the synthetic glucocorticoid methylprednisolone (MPL). Male rats were implanted with a catheter in the right jugular vein, for blood sampling and MPL administration, and with an s.c. cannula for Org 34850 administration. All experiments were conducted at the diurnal hormonal peak in the late afternoon. Rats were connected to an automated sampling system and blood samples were collected every 5 or 10 min. Org 34850 (10 mg/kg, s.c.) or vehicle (5% mulgofen in saline) was injected at 1630 h; 30 min later, rats received an injection of MPL (500 μg/rat, i.v.) or saline (0.1 ml/rat). We found that an acute administration of MPL rapidly decreased the basal corticosterone secretion and this effect was not prevented by acute pretreatment with Org 34850. However, blockade of GR with Org 34850 prevented delayed inhibition of MPL on corticosterone secretion measured between 4 and 12 h after MPL administration. Our data suggest an involvement of GR in modulating delayed, but not fast, inhibition induced by MPL on basal corticosterone secretion
Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems
We explore the quantum aspects of an elastic bar supported at both ends and
subject to compression. If strain rather than stress is held fixed, the system
remains stable beyond the buckling instability, supporting two potential
minima. The classical equilibrium transverse displacement is analogous to a
Ginsburg-Landau order parameter, with strain playing the role of temperature.
We calculate the quantum fluctuations about the classical value as a function
of strain. Excitation energies and quantum fluctuation amplitudes are compared
for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter
Strong coupling between single-electron tunneling and nano-mechanical motion
Nanoscale resonators that oscillate at high frequencies are useful in many
measurement applications. We studied a high-quality mechanical resonator made
from a suspended carbon nanotube driven into motion by applying a periodic
radio frequency potential using a nearby antenna. Single-electron charge
fluctuations created periodic modulations of the mechanical resonance
frequency. A quality factor exceeding 10^5 allows the detection of a shift in
resonance frequency caused by the addition of a single-electron charge on the
nanotube. Additional evidence for the strong coupling of mechanical motion and
electron tunneling is provided by an energy transfer to the electrons causing
mechanical damping and unusual nonlinear behavior. We also discovered that a
direct current through the nanotube spontaneously drives the mechanical
resonator, exerting a force that is coherent with the high-frequency resonant
mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure
Electrical damage induced by ion beam etching of GaAs
We have examined the electrical damage induced in GaAs by ion milling and ion beam assisted etching, relevant to the fabrication of small conducting structures. The depth of the damage was measured by Schottky barrier measurements with in situ deposited gold contacts and by resistance and mobility measurements of etched two-dimensional electron gas structures. The effect of exposed etched sidewalls on the conductivity of narrow wires was examined for GaAs/AlGaAs structures. We find that it is possible to create wires narrower than surface depletion lengths by defining the structures through ion beam induced damage without exposing the sidewalls. In particular, narrow conducting wires can be defined solely by etching the thin-undoped-GaAs cap layer atop the modulation doped material
Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle
We demonstrate single electron shuttling through two coupled nanomechanical
pendula. The pendula are realized as nanopillars etched out of the
semiconductor substrate. Coulomb blockade is found at room temperature,
allowing metrological applications. By controlling the mechanical shuttling
frequency we are able to validate the different regimes of electron shuttling
- …