109 research outputs found

    MECHANISMS OF DISEASE Acute Oxygen-Sensing Mechanisms

    Get PDF
    JOSEPH PRIESTLEY, ONE OF THE THREE SCIENTISTS CREDITED WITH THE discovery of oxygen, described the death of mice that were deprived of oxygen. However, he was also well aware of the toxicity of too much oxygen, stating, “For as a candle burns much faster in dephlogisticated [oxygen enriched] than in common air, so we might live out too fast, and the animal powers be too soon exhausted in this pure kind of air. A moralist, at least, may say, that the air which nature has provided for us is as good as we deserve.”1 In this review we examine the remarkable mechanisms by which different organs detect and respond to acute changes in oxygen tension. Specialized tissues that sense the local oxygen tension include glomus cells of the carotid body, neuroepithelial bodies in the lungs, chromaffin cells of the fetal adrenal medulla, and smooth-muscle cells of the resistance pulmonary arteries, fetoplacental arteries, systemic arteries, and the ductus arteriosus. Together, they constitute a specialized homeostatic oxygen-sensing system. Although all tissues are sensitive to severe hypoxia, these specialized tissues respond rapidly to moderate changes in oxygen tension within the physiologic range (roughly 40 to 100 mm Hg in an adult and 20 to 40 mm Hg in a fetus)Junta de Andalucí

    Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body

    Get PDF
    The hypothesis that changes in environmental O2 tension (pO2) could affect the ionic conductances of dissociated type I cells of the carotid body was tested. Cells were subjected to whole-cell patch clamp and ionic currents were recorded in a control solution with normal pO2 (pO2 = 150 mmHg) and 3-5 min after exposure to the same solution with a lower pO2. Na and Ca currents were unaffected by lowering pO2 to 10 mmHg, however, in all cells studied (n = 42) exposure to hypoxia produced a reversible reduction of the K current. In 14 cells exposed to a pO2 of 10 mmHg peak K current amplitude decreased to 35 +/- 8% of the control value. The effect of low pO2 was independent of the internal Ca2+ concentration and was observed in the absence of internal exogenous nucleotides. Inhibition of K channel activity by hypoxia is a graded phenomenon and in the range between 70 and 120 mmHg, which includes normal pO2 values in arterial blood, it is directly correlated with pO2 levels. Low pO2 appeared to slow down the activation time course of the K current but deactivation kinetics seemed to be unaltered. Type I cells subjected to current clamp generate large Na- and Ca-dependent action potentials repetitively. Exposure to low pO2 produces a 4-10 mV increase in the action potential amplitude and a faster depolarization rate of pacemaker potentials, which leads to an increase in the firing frequency. Repolarization rate of individual action potentials is, however, unaffected, or slightly increased. The selective inhibition of K channel activity by low pO2 is a phenomenon without precedents in the literature that explains the chemoreceptive properties of type I cells. The nature of the interaction of molecular O2 with the K channel protein is unknown, however, it is argued that a hemoglobin-like O2 sensor, perhaps coupled to a G protein, could be involved

    Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body

    Get PDF
    Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception

    Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels

    Get PDF
    Key points: Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K+ channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons. Titration of a glutamate residue within the selectivity filter destabilizes the pore architecture, which collapses towards a non-conductive, inactivated state in a process reminiscent of the usual C-type inactivation observed in many K+ channels. These results indicate that inactivation in CNG channels represents a regulatory mechanism that has been neglected thus far, with possible implications in several physiological processes ranging from signal transduction to growth cone navigation. Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K+ channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo < 7 the I-V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K+ channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues

    Age-Mediated Transcriptomic Changes in Adult Mouse Substantia Nigra

    Get PDF
    Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease (PD). Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques. Here, we show early signs of aging in SNpc, which are more evident than in ventral tegmental area (VTA), a region adjacent to SNpc but less affected in PD. Aging-associated early changes in transcriptome were investigated comparing late middle-aged (18 months old) to young (2 months old) mice in both SNpc and VTA. A meta-analysis of published microarray studies allowed us to generate a common >transcriptional signature> of the aged (≥ 24 months old) mouse brain. SNpc of late-middle aged mice shared characteristics with the transcriptional signature, suggesting an accelerated aging in SNpc. Age-dependent changes in gene expression specific to SNpc were also observed, which were related to neuronal functions and inflammation. Future studies could greatly help determine the contribution of these changes to SNpc aging. These data help understand the processes underlying SNpc aging and their potential contribution to age-related disorders like PD. © 2013 Gao et al.This work was funded by Spanish Ministry of Science and Education, Andalusian Government, and “Marcelino Botín” Foundation. “CIBERNED” (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas) was funded by the Spanish “Carlos III” Institute of Health. LME was supported by the Spanish “Carlos III” Institute of Health. Support from the Spanish Ministry of Science and Education for MHF (“FPI” predoctoral fellowship) is also acknowledged.Peer Reviewe

    Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia

    Get PDF
    Mutations of the von Hippel–Lindau (VHL) gene are associated with pheochromocytomas and paragangliomas, but the role of VHL in sympathoadrenal homeostasis is unknown. We generated mice lacking Vhl in catecholaminergic cells. They exhibited atrophy of the carotid body (CB), adrenal medulla, and sympathetic ganglia. Vhl‐null animals had an increased number of adult CB stem cells, although the survival of newly generated neuron‐like glomus cells was severely compromised. The effects of Vhl deficiency were neither prevented by pharmacological inhibition of prolyl hydroxylases or selective genetic down‐regulation of prolyl hydroxylase‐3, nor phenocopied by hypoxia inducible factor overexpression. Vhl‐deficient animals appeared normal in normoxia but survived for only a few days in hypoxia, presenting with pronounced erythrocytosis, pulmonary edema, and right cardiac hypertrophy. Therefore, in the normal sympathoadrenal setting, Vhl deletion does not give rise to tumors but impairs development and plasticity of the peripheral O2‐sensing system required for survival in hypoxic conditions
    corecore