242 research outputs found
Pseudogap in the Optical Spectra of UPd_2Al_3
The in-plane optical conductivity of UPd_2Al_3 was measured at temperatures
K in the spectral range from 1 cm^{-1} to 40 cm^{-1} (0.14
meV to 5 meV). As the temperature decreases below 25 K a well pronounced
pseudogap of 0.2 meV develops in the optical response. In addition we observe a
narrow conductivity peak at zero frequency which at 2 K is less than 1 cm^{-1}
wide but which contains only a fraction of the delocalized carriers. The gap in
the electronic excitations might be an inherent feature of the heavy fermioin
ground state.Comment: 4 pages, 4 figures (submitted to Phys. Rev. Lett.
Electronic and optical properties of LiBC
LiBC, a semiconducting ternary borocarbide constituted of the lightest
elements only, has been synthesized and characterized by x-ray powder
diffraction, dielectric spectroscopy, and conductivity measurements. Utilizing
an infrared microscope the phonon spectrum has been investigated in single
crystals. The in-plane B-C stretching mode has been detected at 150 meV,
noticeably higher than in AlB2, a non-superconducting isostructural analog of
MgB2. It is this stretching mode, which reveals a strong electron-phonon
coupling in MgB2, driving it into a superconducting state below 40 K, and is
believed to mediate predicted high-temperature superconductivity in hole-doped
LiBC [H. Rosner, A. Kitaigorodsky, and W. E. Pickett, Phys. Rev. Lett. 88,
127001 (2002)].Comment: 4 pages, 4 figure
On the magnetism of Ln{2/3}Cu{3}Ti{4}O{12} (Ln = lanthanide)
The magnetic and thermodynamic properties of the complete
LnCuTiO series were investigated. Here stands for
the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most
of the compounds were prepared as single phase polycrystalline powder %without
any traces of impurities. Marginal amounts of %impurities were
detected Gd, Er, and Tm. %Significant amounts of impurity phases were
found for Ce and Yb. All the samples investigated crystallize in the
space group with lattice constants that follow the lanthanide
contraction. The lattice constant of the Ce compound reveals the presence of
Ce leading to the composition CeCuTiO. From
magnetic susceptibility and electron-spin resonance experiments it can be
concluded that the copper ions always carry a spin and order
antiferromagnetically close to 25\,K. The Curie-Weiss temperatures can
approximately be calculated assuming a two-sublattice model corresponding to
the copper and lanthanide ions, respectively. It seems that the magnetic
moments of the heavy rare earths are weakly coupled to the copper spins, while
for the light lanthanides no such coupling was found. The moments remain
paramagnetic down to the lowest temperatures, with the exception of the Tm
compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic
singlet ground state of the crystal-field split manifold. From
specific-heat measurements we accurately determined the antiferromagnetic
ordering temperature and obtained information on the crystal-field states of
the rare-earth ions. The heat-capacity results also revealed the presence of a
small fraction of Ce in a magnetic state.Comment: 10 pages, 10 figure
Magnetism of PdNi alloys near the critical concentration for ferromagnetism
We report results of a muon spin rotation and relaxation (SR) study of
dilute PdNi alloys, with emphasis on Ni concentrations 0.0243
and 0.025. These are close to the critical value for the onset
of ferromagnetic long-range order (LRO), which is a candidate for a quantum
critical point. The 2.43 and 2.5 at.% Ni alloys exhibit similar SR
properties. Both samples are fully magnetic, with average muon local fields
2.0 and 3.8 mT and Curie temperatures
1.0 and 2.03 K for 2.43 and 2.5 at.% Ni, respectively, at . The
temperature dependence of suggests ordering of
Ni spin clusters rather than isolated spins. Just above a two-phase
region is found with separate volume fractions of quasistatic short-range order
(SRO) and paramagnetism. The SRO fraction decreases to zero with increasing
temperature a few kelvin above . This mixture of SRO and paramagnetism is
consistent with the notion of an inhomogeneous alloy with Ni clustering. The
measured values of extrapolate to = 0.0236 0.0027.
The dynamic muon spin relaxation in the vicinity of differs for the two
samples: a relaxation-rate maximum at is observed for = 0.0243,
reminiscent of critical slowing down, whereas for 0.025 no dynamic
relaxation is observed within the SR time window. The data suggest a
mean-field-like transition in this alloy.Comment: 15 pages, 15 figures, to be published in Phys. Rev.
Spin Frustration and Magnetic Exchange in Cobalt Aluminum Oxide Spinels
We report on x-ray diffraction, magnetic susceptibility, electron- spin
resonance and heat- capacity studies of Co[Al_1-xCo_x]_2O_4 for Co
concentrations 0<x<1. In this spinel system only the A-site Co^2+ cation is
magnetic, while the non-magnetic B-site Al^3+ is substituted by the low-spin
non-magnetic Co^3+, and it is possible to investigate the complete phase
diagram from Co^2+Al^3+_2O_4 to Co^2+Co^3+_2O_4. All samples reveal large
negative Curie-Weiss temperatures Theta_CW of the order of -110 K independent
of concentration, which is attributed to a high multiplicity of the
superexchange interactions between the A-site Co^2+ cations. A pure
antiferromagnetic state is found for x = 1.0 and 0.9 with Neel temperatures T_N
= 29.5 K and 21.2 K, respectively, as evidenced by lambda-like anomalies in the
specific heat. Compositions with 0.3<x<0.75 show smeared out strongly reduced
magnetic ordering temperatures. At low temperatures, a T^2.5 dependence of the
specific heat is indicative of a spin-liquid state. For x < 0.2 a T^2
dependence of the specific heat and a spin-glass like behavior of the
susceptibility below T_f = 4.7 K are observed. The high value of the
frustration parameter f = |Theta_CW|/T_f > 10 indicates the presence of strong
spin frustration at least for x < 0.6. The frustration mechanism is attributed
to competing nearest neighbor and next-nearest neighbor superexchange
interactions between the A-site Co^2+ ions.Comment: 19 pages, 9 figures, 46 reference
Disorder-to-order transition in the magnetic and electronic properties of URh_2Ge_2
We present a study of annealing effects on the physical properties of
tetragonal single--crystalline URh_2Ge_2. This system, which in as-grown form
was recently established as the first metallic 3D random-bond heavy-fermion
spin glass, is transformed by an annealing treatment into a long-range
antiferromagnetically (AFM) ordered heavy-fermion compound. The transport
properties, which in the as-grown material were dominated by the structural
disorder, exhibit in the annealed material signs of typical metallic behavior
along the crystallographic a axis. From our study URh_2Ge_2 emerges as
exemplary material highlighting the role and relevance of structural disorder
for the properties of strongly correlated electron systems. We discuss the link
between the magnetic and electronic behavior and how they are affected by the
structural disorder.Comment: Phys. Rev. B, in print (scheduled 1 Mar 2000
Electronic Structure and Heavy Fermion Behavior in LiV_2O_4
First principles density functional calculations of the electronic and
magnetic properties of spinel-structure LiVO have been performed
using the full potential linearized augmented planewave method. The
calculations show that the electronic structure near the Fermi energy consists
of a manifold of 12 bands derived from V states, weakly hybridized
with O p states. While the total width of this active manifold is approximately
2 eV, it may be roughly decomposed into two groups: high velocity bands and
flatter bands, although these mix in density functional calculations. The flat
bands, which are the more atomic-like lead to a high density of states and
magnetic instability of local moment character. The value of the on-site
exchange energy is sensitive to the exact exchange correlation parameterization
used in the calculations, but is much larger than the interaction between
neighboring spins, reflecting the weak coupling of the magnetic system with the
high velocity bands. A scenario for the observed heavy fermion behavior is
discussed in which conduction electrons in the dispersive bands are weakly
scattered by local moments associated with strongly correlated electrons in the
heavy bands.This is analogous to that in conventional Kondo type heavy
fermions, but is unusual in that both the local moments and conduction
electrons come from the same d-manifold.Comment: 6 Revtex pages, Postscript figs embedded. Revision: figure 4 replaced
with a better version, showing the band character explicitel
Orbital state and magnetic properties of LiV_2 O_4
LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides
because of its heavy fermion like behavior at low temperatures. In this paper
we present results for the orbital state and magnetic properties of LiV_2 O_4
obtained from a combination of density functional theory within the local
density approximation and dynamical mean-field theory (DMFT). The DMFT
equations are solved by quantum Monte Carlo simulations. The trigonal crystal
field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals
cross the Fermi level, with the former being slightly lower in energy and
narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to
an almost localization of one electron per V ion in the a_{1g} orbital, while
the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The
theoretical high-temperature paramagnetic susceptibility chi(T) follows a
Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement
with the experimental results.Comment: 11 pages, 10 figures, 2 table
- …