715 research outputs found

    A new Method for Computing One-Loop Integrals

    Full text link
    We present a new program package for calculating one-loop Feynman integrals, based on a new method avoiding Feynman parametrization and the contraction due to Passarino and Veltman. The package is calculating one-, two- and three-point functions both algebraically and numerically to all tensor cases. This program is written as a package for Maple. An additional Mathematica version is planned later.Comment: 12 pages Late

    Renormalization automated by Hopf algebra

    Full text link
    It was recently shown that the renormalization of quantum field theory is organized by the Hopf algebra of decorated rooted trees, whose coproduct identifies the divergences requiring subtraction and whose antipode achieves this. We automate this process in a few lines of recursive symbolic code, which deliver a finite renormalized expression for any Feynman diagram. We thus verify a representation of the operator product expansion, which generalizes Chen's lemma for iterated integrals. The subset of diagrams whose forest structure entails a unique primitive subdivergence provides a representation of the Hopf algebra HR{\cal H}_R of undecorated rooted trees. Our undecorated Hopf algebra program is designed to process the 24,213,878 BPHZ contributions to the renormalization of 7,813 diagrams, with up to 12 loops. We consider 10 models, each in 9 renormalization schemes. The two simplest models reveal a notable feature of the subalgebra of Connes and Moscovici, corresponding to the commutative part of the Hopf algebra HT{\cal H}_T of the diffeomorphism group: it assigns to Feynman diagrams those weights which remove zeta values from the counterterms of the minimal subtraction scheme. We devise a fast algorithm for these weights, whose squares are summed with a permutation factor, to give rational counterterms.Comment: 22 pages, latex, epsf for figure

    Feynman diagrams as a weight system: four-loop test of a four-term relation

    Get PDF
    At four loops there first occurs a test of the four-term relation derived by the second author in the course of investigating whether counterterms from subdivergence-free diagrams form a weight system. This test relates counterterms in a four-dimensional field theory with Yukawa and ϕ4\phi^4 interactions, where no such relation was previously suspected. Using integration by parts, we reduce each counterterm to massless two-loop two-point integrals. The four-term relation is verified, with =03ζ3+6ζ33ζ3=0 = 0 - 3\zeta_3 + 6\zeta_3 - 3\zeta_3 = 0, demonstrating non-trivial cancellation of the trefoil knot and thus supporting the emerging connection between knots and counterterms, via transcendental numbers assigned by four-dimensional field theories to chord diagrams. Restrictions to scalar couplings and renormalizable interactions are found to be necessary for the existence of a pure four-term relation. Strong indications of richer structure are given at five loops.Comment: minor changes, references updated, 10 pages, LaTe

    Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees

    Get PDF
    The renormalization of quantum field theory twists the antipode of a noncocommutative Hopf algebra of rooted trees, decorated by an infinite set of primitive divergences. The Hopf algebra of undecorated rooted trees, HR{\cal H}_R, generated by a single primitive divergence, solves a universal problem in Hochschild cohomology. It has two nontrivial closed Hopf subalgebras: the cocommutative subalgebra Hladder{\cal H}_{\rm ladder} of pure ladder diagrams and the Connes-Moscovici noncocommutative subalgebra HCM{\cal H}_{\rm CM} of noncommutative geometry. These three Hopf algebras admit a bigrading by nn, the number of nodes, and an index kk that specifies the degree of primitivity. In each case, we use iterations of the relevant coproduct to compute the dimensions of subspaces with modest values of nn and kk and infer a simple generating procedure for the remainder. The results for Hladder{\cal H}_{\rm ladder} are familiar from the theory of partitions, while those for HCM{\cal H}_{\rm CM} involve novel transforms of partitions. Most beautiful is the bigrading of HR{\cal H}_R, the largest of the three. Thanks to Sloane's {\tt superseeker}, we discovered that it saturates all possible inequalities. We prove this by using the universal Hochschild-closed one-cocycle B+B_+, which plugs one set of divergences into another, and by generalizing the concept of natural growth beyond that entailed by the Connes-Moscovici case. We emphasize the yet greater challenge of handling the infinite set of decorations of realistic quantum field theory.Comment: 21 pages, LaTe

    Loop Integrals, R Functions and their Analytic Continuation

    Full text link
    To entirely determine the resulting functions of one-loop integrals it is necessary to find the correct analytic continuation to all relevant kinematical regions. We argue that this continuation procedure may be performed in a general and mathematical accurate way by using the R{\cal R} function notation of these integrals. The two- and three-point cases are discussed explicitly in this manner.Comment: 10 pages (Latex), MZ-TH/93-1

    Hopf Algebra Primitives in Perturbation Quantum Field Theory

    Full text link
    The analysis of the combinatorics resulting from the perturbative expansion of the transition amplitude in quantum field theories, and the relation of this expansion to the Hausdorff series leads naturally to consider an infinite dimensional Lie subalgebra and the corresponding enveloping Hopf algebra, to which the elements of this series are associated. We show that in the context of these structures the power sum symmetric functionals of the perturbative expansion are Hopf primitives and that they are given by linear combinations of Hall polynomials, or diagrammatically by Hall trees. We show that each Hall tree corresponds to sums of Feynman diagrams each with the same number of vertices, external legs and loops. In addition, since the Lie subalgebra admits a derivation endomorphism, we also show that with respect to it these primitives are cyclic vectors generated by the free propagator, and thus provide a recursion relation by means of which the (n+1)-vertex connected Green functions can be derived systematically from the n-vertex ones.Comment: 21 pages, accepted for publication in J.Geom.and Phy

    Calculation of Infrared-Divergent Feynman Diagrams with Zero Mass Threshold

    Get PDF
    Two-loop vertex Feynman diagrams with infrared and collinear divergences are investigated by two independent methods. On the one hand, a method of calculating Feynman diagrams from their small momentum expansion extended to diagrams with zero mass thresholds is applied. On the other hand, a numerical method based on a two-fold integral representation is used. The application of the latter method is possible by using lightcone coordinates in the parallel space. The numerical data obtained with the two methods are in impressive agreement.Comment: 20 pages, Latex with epsf-figures, References updated, to appear in Z.Phys.

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy
    corecore