313 research outputs found

    Orbital Stability of Multi-Planet Systems: Behavior at High Masses

    Full text link
    In the coming years, high contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an order of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet-star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.Comment: Accepted to Ap

    Planet-disc interaction on a freely moving mesh

    Full text link
    General-purpose, moving-mesh schemes for hydrodynamics have opened the possibility of combining the accuracy of grid-based numerical methods with the flexibility and automatic resolution adaptivity of particle-based methods. Due to their supersonic nature, Keplerian accretion discs are in principle a very attractive system for applying such freely moving mesh techniques. However, the high degree of symmetry of simple accretion disc models can be difficult to capture accurately by these methods, due to the generation of geometric grid noise and associated numerical diffusion, which is absent in polar grids. To explore these and other issues, in this work we study the idealized problem of two-dimensional planet-disc interaction with the moving-mesh code AREPO. We explore the hydrodynamic evolution of discs with planets through a series of numerical experiments that vary the planet mass, the disc viscosity and the mesh resolution, and compare the resulting surface density, vortensity field and tidal torque with results from the literature. We find that the performance of the moving-mesh code in this problem is in accordance with published results, showing good consistency with grid codes written in polar coordinates. We also conclude that grid noise and mesh distortions do not introduce excessive numerical diffusion. Finally, we show how the moving-mesh approach can naturally increase resolution in regions of high densityaround planets and planetary wakes, while retaining the background flow at low resolution. This provides an alternative to the difficult task of implementing adaptive mesh refinement in conventional polar-coordinate codes.Comment: 21 pages, 15 figures, 2 tables. Updated to match version published by MNRA

    Correcting for Activity Effects on the Temperatures, Radii, and Estimated Masses of Low-Mass Stars and Brown Dwarfs

    Full text link
    We present empirical relations for determining the amount by which the effective temperatures and radii---and therefore the estimated masses---of low-mass stars and brown dwarfs are altered due to chromospheric activity. Accurate estimates of stellar radii are especially important in the context of searches for transiting exoplanets, which rely upon the assumed stellar radius/density to infer the planet radius/density. Our relations are based on a large set of well studied low-mass stars in the field and on a set of benchmark low-mass eclipsing binaries. The relations link the amount by which an active object's temperature is suppressed, and its radius inflated, to the strength of its Halpha emission. These relations are found to approximately preserve bolometric luminosity. We apply these relations to the peculiar brown-dwarf eclipsing binary 2M0535-05, in which the active, higher-mass brown dwarf has a cooler temperature than its inactive, lower-mass companion. The relations correctly reproduce the observed temperatures and radii of 2M0535-05 after accounting for the Halpha emission; 2M0535-05 would be in precise agreement with theoretical isochrones were it inactive. The relations that we present are applicable to brown dwarfs and low-mass stars with masses below 0.8 Msun and for which the activity, as measured by Halpha, is in the range -4.6 < log Lha/Lbol < -3.3. We expect these relations to be most useful for correcting radius and mass estimates of low-mass stars and brown dwarfs over their active lifetimes (few Gyr). We also discuss the implications of this work for determinations of young cluster IMFs.Comment: To appear in Cool Stars 17 proceeding

    Dynamics of small grains in transitional discs

    Get PDF
    Transitional discs have central regions characterised by significant depletion of both dust and gas compared to younger, optically-thick discs. However, gas and dust are not depleted by equal amounts: gas surface densities are typically reduced by factors of 100\sim 100, but small dust grains are sometimes depleted by far larger factors, to the point of being undetectable. While this extreme dust depletion is often attributed to planet formation, in this paper we show that another physical mechanism is possible: expulsion of grains from the disc by radiation pressure. We explore this mechanism using 2D simulations of dust dynamics, simultaneously solving the equation of radiative transfer with the evolution equations for dust diffusion and advection under the combined effects of stellar radiation and hydrodynamic interaction with a turbulent, accreting background gas disc. We show that, in transition discs that are depleted in both gas and dust fraction by factors of 1001000\sim 100-1000 compared to minimum mass Solar nebular values, and where the ratio of accretion rate to stellar luminosity is low (M˙/L1010\dot{M}/L \lesssim 10^{-10} MM_\odot yr1^{-1} L1L_\odot^{-1}), radiative clearing of any remaining 0.5\sim 0.5 μ\mum and larger grains is both rapid and inevitable. The process is size-dependent, with smaller grains removed fastest and larger ones persisting for longer times. Our proposed mechanism thus naturally explains the extreme depletion of small grains commonly-found in transition discs. We further suggest that the dependence of this mechanism on grain size and optical properties may explain some of the unusual grain properties recently discovered in a number of transition discs. The simulation code we develop is freely available.Comment: 20 pages, 15 figures; MNRAS in press; compared to the previous version, this one has added simulations exploring the impact of adding laminar accretion flows to the model; movies of simulation results available from http://www.mso.anu.edu.au/~krumholz/movies.htm

    Protoplanetary Disks in ρ\rho Ophiuchus as Seen From ALMA

    Get PDF
    We present a high angular resolution (0.2\sim 0.2^{\prime\prime}), high sensitivity (σ0.2\sigma \sim 0.2 mJy) survey of the 870 μ\mum continuum emission from the circumstellar material around 49 pre-main sequence stars in the ρ\rho Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.Comment: 26 pages, 16 figures. Accepted for publication in Ap

    ALMA Measurements of Circumstellar Material in the GQ Lup System

    Get PDF
    We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 μ\mum continuum and CO J=3-2 line emission with beam size 0.3\sim0.3'' (45\sim45 AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The circumprimary dust disk is compact with a FWHM of 59±1259\pm12 AU, while the gas has a larger extent with a characteristic radius of 46.5±1.846.5\pm1.8 AU. By forward-modeling the velocity field of the circumprimary disk based on the CO emission, we constrain the mass of GQ Lup A to be M=(1.03±0.05)(d/156 pc)M_* = (1.03\pm0.05)*(d/156\text{ pc}) MM_\odot, where dd is a known distance, and determine that we view the disk at an inclination angle of 60.5±0.560.5^\circ\pm0.5^\circ and a position angle of 346±1346^\circ \pm1^\circ. The 3σ3\sigma upper limit on the 870 μ\mum flux density of any circumplanetary disk associated with GQ Lup b of <0.15<0.15 mJy implies an upper limit on the dust disk mass of <0.04<0.04 MM_\oplus for standard assumptions about optically thin emission. We discuss proposed mechanisms for the formation of wide-separation substellar companions given the non-detection of circumplanetary disks around GQ Lup b and other similar systems.Comment: 11 pages, 4 figure

    The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systems

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple protostar systems in the Perseus molecular cloud previously detected by the Karl G. Jansky Very Large Array (VLA). We observed 17 close (<<600~AU separation) multiple systems at 1.3~mm in continuum and five molecular lines (i.e., \twco, \cateo, \thco, H2_2CO, SO) to characterize the circum-multiple environments in which these systems are forming. We detect at least one component in the continuum for the 17 multiple systems. In three systems, one companion is not detected, and for two systems the companions are unresolved at our observed resolution. We also detect circum-multiple dust emission toward 8 out of 9 Class 0 multiples. Circum-multiple dust emission is not detected toward any of the 8 Class I multiples. Twelve systems are detected in the dense gas tracers toward their disks/inner envelopes. For these 12 systems, we use the dense gas observations to characterize their formation mechanism. The velocity gradients in the circum-multiple gas are clearly orthogonal to the outflow directions in 8 out of the 12 systems, consistent with disk fragmentation. Moreover, only two systems with separations <<200~AU are \textit{inconsistent} with disk fragmentation, in addition to the two widest systems (>>500~AU). Our results suggest that disk fragmentation via gravitational instability is an important formation mechanism for close multiple systems, but further statistics are needed to better determine the relative fraction formed via this method.Comment: 48 Pages, 26 Figures, 7 Tables, Accepted by Ap

    A Model-Independent Mass and Moderate Eccentricity for β Pic b

    Get PDF
    We use a cross-calibration of Hipparcos and Gaia DR2 astrometry for β\beta Pic to measure the mass of the giant planet β\beta Pic b (13±3(13\pm3 MJup)M_{\rm Jup}) in a comprehensive joint orbit analysis that includes published relative astrometry and radial velocities. Our mass uncertainty is somewhat higher than previous work because our astrometry from the Hipparcos-Gaia Catalog of Accelerations accounts for the error inflation and systematic terms that are required to bring the two data sets onto a common astrometric reference frame, and because we fit freely for the host-star mass (1.84±0.05(1.84\pm0.05 M)M_{\odot}). This first model-independent mass for a directly imaged planet is inconsistent with cold-start models given the age of the β\beta Pic moving group (22±6(22\pm6 Myr) but consistent with hot- and warm-start models, concordant with past work. We find a higher eccentricity (0.24±0.06)(0.24\pm0.06) for β\beta Pic b compared to previous orbital fits. If confirmed by future observations, this eccentricity may help explain inner edge, scale height, and brightness asymmetry of β\beta Pic's disk. It could also potentially signal that β\beta Pic b has migrated inward to its current location, acquiring its eccentricity from interaction with the 3:1 outer Lindblad resonance in the disk.Comment: ApJ Letters, accepte

    Stellar orbit evolution in close circumstellar disc encounters

    Full text link
    The formation and early evolution of circumstellar discs often occurs within dense, newborn stellar clusters. For the first time, we apply the moving-mesh code AREPO, to circumstellar discs in 3-D, focusing on disc-disc interactions that result from stellar fly-bys. Although a small fraction of stars are expected to undergo close approaches, the outcomes of the most violent encounters might leave an imprint on the discs and host stars that will influence both their orbits and their ability to form planets. We first construct well-behaved 3-D models of self-gravitating discs, and then create a suite of numerical experiments of parabolic encounters, exploring the effects of pericenter separation r_p, disc orientation and disc-star mass ratio (M_d/M_*) on the orbital evolution of the host stars. Close encounters (2r_p<~ disc radius) can truncate discs on very short time scales. If discs are massive, close encounters facilitate enough orbital angular momentum extraction to induce stellar capture. We find that for realistic primordial disc masses M_d<~0.1M_*, non-colliding encounters induce minor orbital changes, which is consistent with analytic calculations of encounters in the linear regime. The same disc masses produce entirely different results for grazing/colliding encounters. In the latter case, rapidly cooling discs lose orbital energy by radiating away the energy excess of the shock-heated gas, thus causing capture of the host stars into a bound orbit. In rare cases, a tight binary with a circumbinary disc forms as a result of this encounter.Comment: 20 pages, 14 figures, 1 table. Published by MNRA
    corecore