6 research outputs found

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, β-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1β, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Association between rectal or colon cancer risk and serine hydroxymethyltransferase 1 (<it>SHMT1</it>) C1420T or methylenetetrahydrofolate reductase (<it>MTHFR</it>) C677T polymorphisms was assessed. The serum total homocysteine (HCY), marker of folate metabolism was also investigated.</p> <p>Methods</p> <p>The <it>SHMT1 </it>and <it>MTHFR </it>genotypes were determined by real-time PCR and PCR-RFLP, respectively in 476 patients with rectal, 479 patients with colon cancer and in 461 and 478, respective controls matched for age and sex. Homocysteine levels were determined by HPLC kit. The association between polymorphisms and cancer risk was evaluated by logistic regression analysis adjusted for age, sex and body mass index. The population stratification bias was also estimated.</p> <p>Results</p> <p>There was no association of genotypes or diplotypes with colon cancer. The rectal cancer risk was significantly lower for <it>SHMT1 </it>TT (OR = 0.57, 95% confidence interval (CI) 0.36-0.89) and higher for <it>MTHFR </it>CT genotypes (OR = 1.4, 95%CI 1.06-1.84). A gene-dosage effect was observed for <it>SHMT1 </it>with progressively decreasing risk with increasing number of T allele (p = 0.014). The stratified analysis according to age and sex revealed that the association is mainly present in the younger (< 60 years) or male subgroup. As expected from genotype analysis, the <it>SHMT1 </it>T allele/<it>MTHFR </it>CC diplotype was associated with reduced rectal cancer risk (OR 0.56, 95%CI 0.42-0.77 vs all other diplotypes together). The above results are unlikely to suffer from population stratification bias. In controls HCY was influenced by <it>SHMT1 </it>polymorphism, while in patients it was affected only by Dukes' stage. In patients with Dukes' stage C or D HCY can be considered as a tumor marker only in case of <it>SHMT1 </it>1420CC genotypes.</p> <p>Conclusions</p> <p>A protective effect of <it>SHMT1 </it>1420T allele or <it>SHMT1 </it>1420 T allele/<it>MTHFR </it>677 CC diplotype against rectal but not colon cancer risk was demonstrated. The presence of <it>SHMT1 </it>1420 T allele significantly increases the HCY levels in controls but not in patients. Homocysteine could be considered as a tumor marker in <it>SHMT1 </it>1420 wild-type (CC) CRC patients in Dukes' stage C and D. Further studies need to clarify why <it>SHMT1 </it>and <it>MTHFR </it>polymorphisms are associated only with rectal and not colon cancer risk.</p
    corecore