83 research outputs found

    Requirement for Specific Proteases in Cancer Cell Intravasation as Revealed by a Novel Semiquantitative PCR-Based Assay

    Get PDF
    AbstractProteases are crucial for cancer metastasis, but due to lack of assays, their role in intravasation has not yet been tested. We have developed a human Alu sequence PCR-based assay to quantitate intravasated cells in an in vivo model. We demonstrated that metalloproteinases (MMPs), and most likely MMP-9, are required for intravasation by showing that marimastat, an inhibitor of MMPs, reduced intravasation by more than 90%, and that only tumor cell lines expressing MMP-9 intravasated. Cells with low surface urokinase plasminogen activator (uPA) and uPA receptor (uPAR) were also incapable of intravasation, despite the presence of high levels of MMP-9. We concluded that breaching of the vascular wall is a rate-limiting step for intravasation, and consequently for metastasis, and that cooperation between uPA/uPAR and MMP-9 is required to complete this step

    Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue

    Get PDF
    Background: Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods: The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. Results: The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. Conclusions: The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance

    Texture Analysis and Radial Basis Function Approximation for IVUS Image Segmentation

    Get PDF
    >Intravascular ultrasound (IVUS) has become in the last years an important tool in both clinical and research applications. The detection of lumen and media-adventitia borders in IVUS images represents a first necessary step in the utilization of the IVUS data for the 3D reconstruction of human coronary arteries and the reliable quantitative assessment of the atherosclerotic lesions. To serve this goal, a fully automated technique for the detection of lumen and media-adventitia boundaries has been developed. This comprises two different steps for contour initialization, one for each corresponding contour of interest, based on the results of texture analysis, and a procedure for approximating the initialization results with smooth continuous curves. A multilevel Discrete Wavelet Frames decomposition is used for texture analysis, whereas Radial Basis Function approximation is employed for producing smooth contours. The proposed method shows promising results compared to a previous approach for texture-based IVUS image analysis

    Respiration-averaged CT versus standard CT attenuation maps for correction of the 18F-NaF uptake in hybrid PET/CT

    Get PDF
    BACKGROUND: To evaluate the impact of respiratory-averaged computed tomography attenuation correction (RACTAC) compared to standard single-phase computed tomography attenuation correction (CTAC) map, on the quantitative measures of coronary atherosclerotic lesions of (18)F-sodium fluoride ((18)F-NaF) uptake in hybrid positron emission tomography and computed tomography (PET/CT). METHODS: This study comprised 23 patients who underwent (18)F-NaF coronary PET in a hybrid PET/CT system. All patients had a standard single-phase CTAC obtained during free-breathing and a 4D cine-CT scan. From the cine-CT acquisition, RACTAC maps were obtained by averaging all images acquired over 5 seconds. PET reconstructions using either CTAC or RACTAC were compared. The quantitative impact of employing RACTAC was assessed using maximum target-to-background (TBR(MAX)) and coronary microcalcification activity (CMA). Statistical differences were analyzed using reproducibility coefficients and Bland-Altman plots. RESULTS: In 23 patients, we evaluated 34 coronary lesions using CTAC and RACTAC reconstructions. There was good agreement between CTAC and RACTAC for TBR(MAX) (median [Interquartile range]): CTAC= 1.65[1.23–2.38], RACTAC= 1.63[1.23–2.33], p=0.55), with coefficient of reproducibility of 0.18, and CMA: CTAC= 0.10 [0–1.0], RACTAC= 0.15[0–1.03], p=0.55 with coefficient of reproducibility of 0.17 CONCLUSION: Respiratory-averaged and standard single-phase attenuation correction maps provide similar and reproducible methods of quantifying coronary (18)F-NaF uptake on PET/CT
    corecore