314 research outputs found
Circuit quantum acoustodynamics with surface acoustic waves
The experimental investigation of quantum devices incorporating mechanical
resonators has opened up new frontiers in the study of quantum mechanics at a
macroscopic level. Superconducting microwave circuits have proven to be
a powerful platform for the realisation of such quantum devices, both in cavity
optomechanics, and circuit quantum electro-dynamics (QED).
While most experiments to date have involved localised nanomechanical
resonators, it has recently been shown that propagating surface acoustic waves
(SAWs) can be piezoelectrically coupled to superconducting qubits, and
confined in high-quality Fabry-Perot cavities up to microwave frequencies in
the quantum regime, indicating the possibility of realising coherent
exchange of quantum information between the two systems. Here we present
measurements of a device in which a superconducting qubit is embedded in, and
interacts with, the acoustic field of a Fabry-Perot SAW cavity on quartz,
realising a surface acoustic version of cavity quantum electrodynamics. This
quantum acoustodynamics (QAD) architecture may be used to develop new quantum
acoustic devices in which quantum information is stored in trapped on-chip
surface acoustic wavepackets, and manipulated in ways that are impossible with
purely electromagnetic signals, due to the times slower speed of
travel of the mechanical waves.Comment: 12 pages, 9 figures, 1 tabl
Leggett-Garg inequality violations with a large ensemble of qubits
We investigate how discrete internal degrees of freedom in a quasimacroscopic system affect the violation of the Leggett-Garg inequality, a test of macroscopic realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in nitrogen-vacancy (NV) centers in diamond, erbium in Y2SiO5, bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett-Garg inequality and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the nontrivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments
Large collective Lamb shift of two distant superconducting artificial atoms
Virtual photons can mediate interaction between atoms, resulting in an energy
shift known as a collective Lamb shift. Observing the collective Lamb shift is
challenging, since it can be obscured by radiative decay and direct atom-atom
interactions. Here, we place two superconducting qubits in a transmission line
terminated by a mirror, which suppresses decay. We measure a collective Lamb
shift reaching 0.8% of the qubit transition frequency and exceeding the
transition linewidth. We also show that the qubits can interact via the
transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure
Probing the quantum vacuum with an artificial atom in front of a mirror
Quantum fluctuations of the vacuum are both a surprising and fundamental
phenomenon of nature. Understood as virtual photons flitting in and out of
existence, they still have a very real impact, \emph{e.g.}, in the Casimir
effects and the lifetimes of atoms. Engineering vacuum fluctuations is
therefore becoming increasingly important to emerging technologies. Here, we
shape vacuum fluctuations using a "mirror", creating regions in space where
they are suppressed. As we then effectively move an artificial atom in and out
of these regions, measuring the atomic lifetime tells us the strength of the
fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a
factor of 50 below what would be expected without the mirror, demonstrating
that we can hide the atom from the vacuum
The Genetic Interacting Landscape of 63 Candidate Genes in Major Depressive Disorder: An Explorative Study
Background:
Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear.
This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Results:
Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (\u3c 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (\u3c 0.15). Conclusions:
We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously unsuspected effects that could provide novel insights into MDD risk, but much larger sample sizes are needed before this strategy can be powerfully applied
Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod
Background:
Neurofilament light chain (NFL) is a cerebrospinal fluid (CSF) marker of neuroaxonal damage in multiple sclerosis (MS).
Objective:
To determine the correlation of NFL in CSF and serum/plasma, and in plasma after switching from injectable MS therapies to fingolimod.
Methods:
A first cohort consisted of MS patients (n = 39) and neurological disease controls (n = 27) where CSF and plasma/serum had been collected for diagnostic purposes. A second cohort (n = 243) consisted of patients from a post-marketing study of fingolimod. NFL was determined with Single Molecule Array (Simoa™) technology (detection threshold 1.95 pg/mL).
Results:
Mean NFL pg/mL (standard deviation (SD)) was 341 (267) and 1475 (2358) in CSF and 8.2 (3.58) and 17.0 (16.94) in serum from controls and MS, respectively. CSF/serum and plasma/serum levels were highly correlated (n = 66, rho = 0.672, p < 0.0001 and n = 16, rho = 0.684, p = 0.009, respectively). In patients starting fingolimod (n = 243), mean NFL pg/mL (SD) in plasma was reduced between baseline (20.4 (10.7)) and at 12 months (13.5 (7.3), p < 3 × 10−6), and levels remained stable at 24 months (13.2 (6.2)).
Conclusion:
NFL in serum and CSF are highly correlated and plasma NFL levels decrease after switching to highly effective MS therapy. Blood NFL measurement can be considered as a biomarker for MS therapy response
Breakdown of the cross-kerr scheme for photon counting
We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect.We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems
Quantum Acoustics with Surface Acoustic Waves
It has recently been demonstrated that surface acoustic waves (SAWs) can
interact with superconducting qubits at the quantum level. SAW resonators in
the GHz frequency range have also been found to have low loss at temperatures
compatible with superconducting quantum circuits. These advances open up new
possibilities to use the phonon degree of freedom to carry quantum information.
In this paper, we give a description of the basic SAW components needed to
develop quantum circuits, where propagating or localized SAW-phonons are used
both to study basic physics and to manipulate quantum information. Using
phonons instead of photons offers new possibilities which make these quantum
acoustic circuits very interesting. We discuss general considerations for SAW
experiments at the quantum level and describe experiments both with SAW
resonators and with interaction between SAWs and a qubit. We also discuss
several potential future developments.Comment: 14 pages, 12 figure
Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.Peer reviewe
- …