111 research outputs found

    Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy

    Get PDF
    A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.Comment: 10 pages, 4 figure

    Structure and Stability of Si(114)-(2x1)

    Full text link
    We describe a recently discovered stable planar surface of silicon, Si(114). This high-index surface, oriented 19.5 degrees away from (001) toward (111), undergoes a 2x1 reconstruction. We propose a complete model for the reconstructed surface based on scanning tunneling microscopy images and first-principles total-energy calculations. The structure and stability of Si(114)-(2x1) arises from a balance between surface dangling bond reduction and surface stress relief, and provides a key to understanding the morphology of a family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published in Phys. Rev. Let

    Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts

    Get PDF
    We report on recent progress in the acousto-electrical control of self-assembled quantum dot and quantum post using radio frequency surface acoustic waves (SAWs). We show that the occupancy state of these optically active nanostructures can be controlled via the SAW-induced dissociation of photogenerated excitons and the resulting sequential bipolar carrier injection which strongly favors the formation of neutral excitons for quantum posts in contrast to conventional quantum dots. We demonstrate high fidelity preparation of the neutral biexciton which makes this approach suitable for deterministic entangled photon pair generation. The SAW driven acoustic charge conveyance is found to be highly efficient within the wide quantum well surrounding the quantum posts. Finally we present the direct observation of acoustically triggered carrier injection into remotely positioned, individual quantum posts which is required for a low-jitter SAW-triggered single photon source.Comment: Proceedings of ISCS 2011; to appear in physics status solidi (c

    Para to Ortho transition of metallic dimers on Si(001)

    Full text link
    Extensive electronic structure calculations are performed to obtain the stable geometries of metals like Al, Ga and In on the Si(001) surface at 0.5 ML and 1 ML coverages. Our results coupled with previous theoretical findings explain the recent experimental data in a comprehensive fashion. At low coverages, as shown by previous works, `Para' dimers give the lowest energy structure. With increasing coverage beyond 0.5 ML, `Ortho' dimers become part of low energy configurations leading toward a `Para' to `Ortho' transition at 1 ML coverage. For In mixed staggered dimers (`Ortho' and `Para') give the lowest energy configuration. For Ga, mixed dimers are non-staggered, while for Al `Para' to `Ortho' transition of dimers is complete. Thus at intermediate coverages between 0.5 and 1 ML, the `Ortho' and `Para' dimers may coexist on the surface. Consequently, this may be an explanation of the fact that the experimental observations can be successfully interpreted using either orientation. A supported zigzag structure at 0.5 ML, which resembles (CH)x{\rm (CH)_x}, does not undergo a dimerization transition, and hence stays semi-metallic. Also, unlike (CH)x{\rm (CH)_x} the soliton formation is ruled out for this structure.Comment: 8 pages, 6 figure

    Development of a Boston-area 50-km fiber quantum network testbed

    Full text link
    Distributing quantum information between remote systems will necessitate the integration of emerging quantum components with existing communication infrastructure. This requires understanding the channel-induced degradations of the transmitted quantum signals, beyond the typical characterization methods for classical communication systems. Here we report on a comprehensive characterization of a Boston-Area Quantum Network (BARQNET) telecom fiber testbed, measuring the time-of-flight, polarization, and phase noise imparted on transmitted signals. We further design and demonstrate a compensation system that is both resilient to these noise sources and compatible with integration of emerging quantum memory components on the deployed link. These results have utility for future work on the BARQNET as well as other quantum network testbeds in development, enabling near-term quantum networking demonstrations and informing what areas of technology development will be most impactful in advancing future system capabilities.Comment: 9 pages, 5 figures + Supplemental Material

    Integrating Signals from the T-Cell Receptor and the Interleukin-2 Receptor

    Get PDF
    T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells
    • …
    corecore