81 research outputs found

    G Ă— E interactions in QTL introgression lines of Spanish-type groundnut (Arachis hypogaea L.)

    Get PDF
    Multi-environment testing at five locations for rust and late leaf spot (LLS) resistance with 41 introgressed lines (ILs) bred using marker-assisted backcross breeding in the genetic background Spanish- type groundnut varieties identified significant genotype, and genotype 9 environment interactions (GEI) for LLS disease resistance and yield parameters. Significant GEI effects suggest the need to identify location specific breeding lines to achieve gains in pod yield and LLS resistance. The observed variable LLS disease reaction among the ILs in part suggests influence of background genotype on the level of resistance. A breeding scheme with early generation selection using molecular markers followed by phenotyping for LLS, and multi-location testing of fixed breeding lines was optimized to enhance selection intensity and accuracy in groundnut breeding. The ILs, ICGVs 14431, 14436 and 14438 with pooled LLS score at 90 DAS of 3.5–3.7 were superior to respective recurrent parent for pod yield, with early maturing similar to recurrent parents. The pod yield advantage in ILs is attributed by more number of pods, besides resistance to LLS that contributes to better filling

    Fluid lavage in patients with open fracture wounds (FLOW): an international survey of 984 surgeons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although surgeons acknowledge the importance of irrigating open fracture wounds, the choice of irrigating fluid and delivery pressure remains controversial. Our objective was to clarify current opinion with regard to the irrigation of open fracture wounds.</p> <p>Methods</p> <p>We used a cross-sectional survey and a sample-to-redundancy strategy to examine surgeons' preferences in the initial management of open fracture wounds. We mailed this survey to members of the Canadian Orthopaedic Association and delivered it to attendees of an international fracture course (AO, Davos, Switzerland).</p> <p>Results</p> <p>Of the 1,764 surgeons who received the questionnaire, 984 (55.8%) responded. In the management of open wounds, the majority of surgeons surveyed, 676 (70.5%), favoured normal saline alone. Bacitracin solution was used routinely by only 161 surgeons (16.8%). The majority of surgeons, 695 (71%) used low pressures when delivering the irrigating solution to the wound. There was, however considerable variation in what pressures constituted high versus low pressure lavage. The overwhelming majority of surgeons, 889 (94.2%), reported they would change their practice if a large randomized controlled trial showed a clear benefit of an irrigating solution – especially if it was different from the solution they used.</p> <p>Conclusion</p> <p>The majority of surgeons favour both normal saline and low pressure lavage for the initial management of open fracture wounds. However, opinions varied as regards the comparative efficacy of different solutions, the use of additives and high versus low pressure. Surgeons have expressed considerable support for a trial evaluating both irrigating solutions and pressures.</p

    Cyclic Tensile Culture Promotes Fibroblastic Differentiation of Marrow Stromal Cells Encapsulated in Poly(Ethylene Glycol)-Based Hydrogels

    No full text
    To inform future efforts in tendon/ligament tissue engineering, our laboratory has developed a well-controlled model system with the ability to alter both external tensile loading parameters and local biochemical cues to better understand marrow stromal cell differentiation in response to both stimuli concurrently. In particular, the synthetic, poly(ethylene glycol)-based hydrogel material oligo(poly(ethylene glycol) fumarate) (OPF) has been explored as a cell carrier for this system. This biomaterial can be tailored to present covalently incorporated bioactive moieties and can be loaded in our custom cyclic tensile bioreactor for up to 28 days with no loss of material integrity. Human marrow stromal cells encapsulated in these OPF hydrogels were cultured (21 days) under cyclic tensile strain (10%, 1 Hz, 3 h of strain followed by 3 h without) or at 0% strain. No difference was observed in cell number due to mechanical stimulation or across time (n = 4), with cells remaining viable (n = 4) through 21 days. Cyclic strain significantly upregulated all tendon/ligament fibroblastic genes examined (collagen I, collagen III, and tenascin-C) by day 21 (n ≥ 6), whereas genes for other pathways (osteogenic, chondrogenic, and adipogenic) did not increase. After 21 days, the presence of collagen I and tenascin-C was observed via immunostaining (n = 2). This study demonstrates the utility of this hydrogel/bioreactor system as a versatile, yet well-controlled, model environment to study marrow stromal cell differentiation toward the tendon/ligament phenotype under a variety of conditions
    • …
    corecore