302 research outputs found

    K-theoretic duality for shifts of finite type

    Full text link
    C*-algebras generalizing Cuntz-Krieger algebras can be associated to hyperbolic homeomorphisms of compact metric spaces. They satisfy a non-commutative form of Spanier-Whitehead duality with respect to K-theory. We prove this for the case of subshifts of finite type. The special feature of the present situation is that the constructions are all done on the full Fock space and are very explicit, while the general theorem requires much more abstract machinery.Comment: 23 pages, Latex fil

    Bremsstrahlung neutrinos from electron-electron scattering in a relativistic degenerate electron plasma

    Full text link
    We present a calculation of neutrino pair bremsstrahlung due to electron-electron scattering in a relativistic degenerate plasma of electrons. Proper treatment of the in-medium photon propagator, i.e., inclusion of Debye screening of the longitudinal part and Landau damping of the transverse part, leads to a neutrino emissivity which is several orders of magnitude larger than when Debye screening is imposed for the tranverse part. Our results show that this in-medium process can compete with other sources of neutrino radiation and can, in some cases, even be the dominant neutrino emission mechanism. We also discuss the natural extension to quark-quark bremsstrahlung in gapped and ungapped quark matter.Comment: 15 pages, 7 figure

    Neutrino-pair bremsstrahlung by electrons in neutron star crusts

    Get PDF
    Neutrino-pair bremsstrahlung by relativistic degenerate electrons in a neutron-star crust at densities (10^9 - 1.5x10^{14}) g/cm^3 is analyzed. The processes taken into account are neutrino emission due to Coulomb scattering of electrons by atomic nuclei in a Coulomb liquid, and electron-phonon scattering and Bragg diffraction (the static-lattice contribution) in a Coulomb crystal. The static-lattice contribution is calculated including the electron band-structure effects for cubic Coulomb crystals of different types and also for the liquid crystal phases composed of rod- and plate-like nuclei in the neutron-star mantle (at 10^{14} - 1.5x10^{14} g/cm^3). The phonon contribution is evaluated with proper treatment of the multi-phonon processes which removes a jump in the neutrino bremsstrahlung emissivity at the melting point obtained in previous works. Below 10^{13} g/cm^3, the results are rather insensitive to the nuclear form factor, but results for the solid state near the melting point are affected significantly by the Debye-Waller factor and multi-phonon processes. At higher densities, the nuclear form factor becomes more significant. A comparison of the various neutrino generation mechanisms in neutron star crusts shows that electron bremsstrahlung is among the most important ones.Comment: 17 pages, 13 figures, LaTeX using aa.cls and epsf.sty. A&A, in pres

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Electron thermal conductivity owing to collisions between degenerate electrons

    Get PDF
    We calculate the thermal conductivity of electrons produced by electron-electron Coulomb scattering in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly reduces this conductivity in the domain of ultrarelativistic electrons at temperatures below the electron plasma temperature. In the inner crust of a neutron star at temperatures T < 1e7 K this thermal conductivity completely dominates over the electron conductivity due to electron-ion (electron-phonon) scattering and becomes competitive with the the electron conductivity due to scattering of electrons by impurity ions.Comment: 8 pages, 3 figure

    Topological quantization of boundary forces and the integrated density of states

    Full text link
    For quantum systems described by Schr\"odinger operators on the half-space \RR^{d-1}\times\RR^{leq 0} the boundary force per unit area and unit energy is topologically quantised provided the Fermi energy lies in a gap of the bulk spectrum. Under this condition it is also equal to the integrated density of states at the Fermi energy.Comment: 7 page

    Leptonic contribution to the bulk viscosity of nuclear matter

    Full text link
    For beta-equilibrated nuclear matter we estimate the contribution to the bulk viscosity from purely leptonic processes, namely the conversion of electrons to and from muons. For oscillation frequencies in the kiloHertz range, we find that this process provides the dominant contribution to the bulk viscosity when the temperature is well below the critical temperature for superconductivity or superfluidity of the nuclear matter.Comment: 15 pages, LaTeX, new appendix and general clarifications in response to referee comment

    Collective effects in ννˉ\nu \bar{\nu} synchrotron radiation from neutron stars

    Full text link
    We have considered collective effects in ννˉ\nu \bar{\nu} synchrotron radiation from an ultrarelativistic degenerate electron gas in neutron stars with strong magnetic fields. For this problem we apply a calculation method which explicitly makes use of the fact that the radiating electron moves semi-classically, but takes into account the interaction among particles in a quantum way. First we apply this method to calculate ννˉ\nu \bar{\nu} synchrotron radiation by an ultrarelativistic electron in vacuum and we compare this result with that obtained previously by other techniques. When a degenerate plasma is considered, we show that collective effects lead to an essential enhancement (about three times) of the vector weak-current contribution to neutrino pair emissivity.Comment: 14 pages, 2 figure

    The Crustal Rigidity of a Neutron Star, and Implications for PSR 1828-11 and other Precession Candidates

    Get PDF
    We calculate the crustal rigidity parameter, b, of a neutron star (NS), and show that b is a factor 40 smaller than the standard estimate due to Baym & Pines (1971). For a NS with a relaxed crust, the NS's free-precession frequency is directly proportional to b. We apply our result for b to PSR 1828-11, a 2.5 Hz pulsar that appears to be precessing with period 511 d. Assuming this 511-d period is set by crustal rigidity, we show that this NS's crust is not relaxed, and that its reference spin (roughly, the spin for which the crust is most relaxed) is 40 Hz, and that the average spindown strain in the crust is 5 \times 10^{-5}. We also briefly describe the implications of our b calculation for other well-known precession candidates.Comment: 44 pages, 10 figures, submitted to Ap

    Weak decay of uniformly accelerated protons and related processes

    Full text link
    We investigate the weak interaction emission of spin-1/2 fermions from accelerated currents. As particular applications, we analyze the decay of uniformly accelerated protons and neutrons, and the neutrino-antineutrino emission from uniformly accelerated electrons. The possible relevance of our results to astrophysics is also discussed.Comment: 16 pages (REVTEX), 6 figures, to appear in Physical Review
    • …
    corecore