137 research outputs found

    Thermal Instability of Giant Graviton in Matrix Model on PP-wave Background

    Full text link
    The thermal instability of the giant graviton is investigated within the BMN matrix model. We calculate the one-loop thermal correction of the quantum fluctuation around the trivial vacuum and giant graviton respectively. From the exact formula of the free energy we see that at low temperature the giant graviton is unstable and will dissolve into vacuum fluctuation. However, at sufficient high temperature the trivial vacuum fluctuation will condense to form the giant graviton configuration. The transition temperature of the giant graviton is determined in our calculation.Comment: Latex, 8 pages, typos corrected, mention the elliptic deformation of giant gravito

    Tachyon Tube on non BPS D-branes

    Full text link
    We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane.Comment: Latex 18 page

    Condensation of Tubular D2-branes in Magnetic Field Background

    Full text link
    It is known that in the Minkowski vacuum a bunch of IIA superstrings with D0-branes can be blown-up to a supersymmetric tubular D2-brane, which is supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld (BI) fields. In this paper we show how the multiple, smaller tubes with relative angular momentum could condense to a single, larger tube to stabilize the system. Such a phenomena could also be shown in the systems under the Melvin magnetic tube or uniform magnetic field background. However, depending on the magnitude of field strength, a tube in the uniform magnetic field background may split into multiple, smaller tubes with relative angular momentum to stabilize the system.Comment: Latex 10 pages, mention the dynamical joining of the tubes, modify figure

    Holographic Description of Glueball and Baryon in Noncommutative Dipole Gauge Theory

    Full text link
    We study the glueball spectrum in the supersymmetric and non-supersymmetric 4D non-commutative dipole gauge theory from the holographic description. We adopt the semiclassical WKB approximation to solve the dilaton and antisymmetric tensor field equations on the dual supergravity backgrounds to find the analytic formula of the spectrum of 0++0^{++} and 11^{--} glueballs, respectively. In the supersymmetric theory we see that the dipole length plays the intrinsic scale which reflects the discrete spectrum therein. In the non-supersymmetric theory, the temperature (or the radius of compactification) in there will now play the intrinsic scale and we see that the dipole has an effect to produce attractive force between the gluons within the glueball. We also study the confining force between the quarks within the baryon via strings that hang into the dipole deformed AdS geometry and see that the dipole could also produce an attractive force between the quarks. In particular, we find that the baryon has two phases in which a big baryon is dual to the static string while a small baryon is described by a moving dual string .Comment: Latex 18 page

    Rewritable nanoscale oxide photodetector

    Full text link
    Nanophotonic devices seek to generate, guide, and/or detect light using structures whose nanoscale dimensions are closely tied to their functionality. Semiconducting nanowires, grown with tailored optoelectronic properties, have been successfully placed into devices for a variety of applications. However, the integration of photonic nanostructures with electronic circuitry has always been one of the most challenging aspects of device development. Here we report the development of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions 2-3 nm are created using a reversible AFM writing technique. These nanoscale devices exhibit a remarkably high gain for their size, in part because of the large electric fields produced in the gap region. The photoconductive response is gate-tunable and spans the visible-to-near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with nanowires and transistors in a single materials platform foreshadows new families of integrated optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure

    Statistical Interparticle Potential between Two Anyons

    Full text link
    The density matrix of a two-anyon system is evaluated and used to investigate the "statistical interparticle potential" following the theory of Uhlenbeck. The main purpose is to see how the statistical potential will depend on the fractional statistical parameter α\alpha. The result shows that the statistical potential for a two-anyon system with α12\alpha\ge {1\over2} is always repulsive. For the system with 0<α<120<\alpha< {1\over2}, the potential is repulsive at short distances and becomes attractive at long distances. It remains only in the boson system (α=0\alpha=0) that the repulsive potential arising from the exclusion principle can disappear and lead to an attractive potential at all distances.Comment: Latex 5 pages, correct typos and figur

    Thermal Giant Graviton with Non-commutative Dipole Field

    Full text link
    Using the type II near-extremal 3D-branes solution we apply the T-duality and smeared twist to construct the supergravity backgrounds which dual to the 4D finite temperature non-commutative dipole field theories. We first consider the zero-temperature system in which, depending on the property of dipole vectors it may be N=2, N=1 or N=0 theory. We investigate the rotating D3-brane configurations moving on the spactimes and show that, for the cases of N=2 and N =1 the rotating D3-brane could be blowed up to the stable spherical configuration which is called as giant graviton and has a less energy than the point-like graviton. The giant graviton configuration is stable only if its angular momentum was less than a critical value of PcP_c which is an increasing function of the dipole strength. For the case of non-supersymmetric theory, however, the spherical configuration has a larger energy than the point-like graviton. We also find that the dipole field always render the dual giant graviton to be more stable than the point-like graviton. The relation of dual giant graviton energy with its angular momentum, which in the AdS/CFT correspondence being the operator anomalous dimension is obtained. We furthermore show that the temperature does not change the property of the giant graviton, while it will render the dual giant graviton to be unstable.Comment: Latex 20 pages, add comments about BPS bound below (3.8

    Chronology Protection in Generalized Godel Spacetime

    Get PDF
    The effective action of a free scalar field propagating in the generalized Godel spacetime is evaluated by the zeta-function regularization method. From the result we show that the renormalized stress energy tensor may be divergent at the chronology horizon. This gives a support to the chronology protection conjecture.Comment: Latex 6 pages, typos correcte

    Semiclassical gravitation and quantization for the Bianchi type I universe with large anisotropy

    Get PDF
    We use a perturbative method to evaluate the effective action of a free scalar field propagating in the Bianchi type I spacetime with large space anisotropy. The zeta- function regularization method is used to evaluate the action to the second order in the Schwinger perturbative formula. As the quantum corrections contain fourth derivative in the metric we apply the method of iterative reduction to reduce it to the second-order form to obtain the self-consistent solution of the semiclassical gravity theory, The reduced Einstein equation shows that the space anisotropy, which will be smoothed out during the evolution of universe, may play an important role in the dynamics of early universe. We quantize the corresponding minisuperspace model to investigate the behavior of the space anisotropy in the initial epoch. From the wavefunction of the Wheeler-DeWitt equation we see that the probability for the Bianchi type I spacetime with large anisotropy is less then that with a small anisotropy.Comment: Latex 15 page

    Precision health: A nursing perspective

    Get PDF
    Precision health refers to personalized healthcare based on a person's unique genetic, genomic, or omic composition within the context of lifestyle, social, economic, cultural and environmental influences to help individuals achieve well-being and optimal health. Precision health utilizes big data sets that combine omics (i.e. genomic sequence, protein, metabolite, and microbiome information) with clinical information and health outcomes to optimize disease diagnosis, treatment and prevention specific to each patient. Successful implementation of precision health requires interprofessional collaboration, community outreach efforts, and coordination of care, a mission that nurses are well-positioned to lead. Despite the surge of interest and attention to precision health, most nurses are not well-versed in precision health or its implications for the nursing profession. Based on a critical analysis of literature and expert opinions, this paper provides an overview of precision health and the importance of engaging the nursing profession for its implementation. Other topics reviewed in this paper include big data and omics, information science, integration of family health history in precision health, and nursing omics research in symptom science. The paper concludes with recommendations for nurse leaders in research, education, clinical practice, nursing administration and policy settings for which to develop strategic plans to implement precision health
    corecore