1,601 research outputs found

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    Assessing the Effects of a Program to Promote Energy-Efficiency Upgrades in Existing Homes

    Get PDF
    Energy efficient mortgages (EEMs) are intended to mitigate some of the financial barriers to upgrading the energy efficiency of existing (and sometimes new) houses. The Time of Sale Energy Renovation Program (TOSER) is designed to overcome key obstacles that have limited the use of EEMs when existing homes are sold. Conducted by Staples-Hutchinson for Pacific Gas and Electric, the Program primarily provides seminars to real estate agents and lenders to educate them about the characteristics and benefits of EEMs. EEMs typically allow the buyer to include cost-effective efficiency upgrades in her mortgage. This paper presents an overview of the TOSER Program and the results of the third and fourth evaluation of this Program. This study relied on market actor interviews and statistical analyses of key program data to identify program impacts and opportunities to improve program effectiveness

    The changing of the guard: groupwork with people who have intellectual disabilities

    Get PDF
    This paper considers the impact of service systems on group activities. It describes an inter-professional groupwork project facilitated by a social worker and a community nurse. The project provided an emancipatory experience for a group of adults who had intellectual disabilities. The group was charged with the task of reviewing and updating the recruitment and interview processes used by a 'Learning Disability Partnership Board', when employing new support workers. The paper begins with a brief history of intellectual disability and provides a context to the underpinning philosophical belief that people should be encouraged and supported to inhabit valued social roles no matter what disability they may have. It then identifies the ways in which the sponsoring health, education and social care services impacted on the creation and development of a groupwork project. It might have been expected that the nature of the intellectual disability would have been the major influence on group process. However the paper reveals that organisational constraints had a significant impact on group functioning. Issues including, staffing budgets and transport contracts impacted on group process and function. The results of the project show how, with adequate support, people with intellectual disability can make important decisions that have long-reaching impacts on the services

    CEM03 and LAQGSM03 - new modeling tools for nuclear applications

    Full text link
    An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) have been developed recently at LANL to describe reactions induced by particles and nuclei for a number of applications. Our CEM2k and LAQGSM merged with the GEM2 evaporation/fission code by Furihata have predictive powers comparable to other modern codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event generators in transport codes for applications. During the last year, we have made a significant improvements to the intranuclear cascade parts of CEM2k and LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies to 10 GeV and higher. We have produced in this way improved versions of our codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for different reactions compared with predictions by other models, as well as examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics: Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200

    Depths and Thermal Habitat Used by Large versus Small Northern Pike in Three Minnesota Lakes

    Full text link
    We monitored depths and temperatures used by large (>71‐cm) versus small Northern Pike Esox lucius in three north‐central Minnesota lakes with either acoustic telemetry or archival tags. Individual Northern Pike demonstrated flexibility in depths used within a season and between years. The fish had some tolerance for low levels of dissolved oxygen (<3 mg/L), but depth selection was generally constrained by low dissolved oxygen in summer and winter. The fish more fully exploited all available depths during winter and thermal turnover periods. During July and August, large Northern Pike tended to follow the thermocline into cooler water as upper water layers warmed. Selection ratios indicated that large Northern Pike preferred water temperatures of 16–21°C during August when temperatures up to 28°C were available. In two lakes providing dense overhead cover from water lilies in shallow water, small Northern Pike used warmer, shallower water compared with large fish during summer. In a third lake providing no such cover, small fish were more often in deeper, cooler water. For small Northern Pike, temperature seemed to be a secondary habitat consideration behind the presence of shallow vegetated cover. This study provided detailed temperature selection information that will be useful when considering temperature as an ecological resource for different sizes of Northern Pike.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141595/1/tafs1629.pd

    Experiments with planar inductive ion source meant for creation ofH+ Beams

    Get PDF
    In this article the effect of different engineering parameters of an rf-driven ion sources with external spiral antenna and quartz disk rf-window are studied. Paper consists of three main topics: The effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species and the effect of different antenna geometries on the extracted current density. The operation gas pressure as a function of the plasma chamber diameter, was studied. This was done with three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum and alumina (AlO{sub 2}). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. Highest proton fraction of {approx} 8% at 2000 W of rf-power and at pressure of 1.3 Pa was measured using AlO{sub 2} plasma chamber and no multicusp confinement. For all the compared ion sources at 1000W of rf-power, source with multicusp confinement and AlO2 plasma chamber yields highest current density of 82.7 mA/cm{sup 2} at operation pressure of 4 Pa. From the same source highest measured current density of 143 mA/cm{sup 2} at 1.3 Pa and 2200W of rf-power was achieved. Multicusp confinement increased the maximum extracted current up to factor of two. Plasma production with different antenna geometries was also studied. Antenna tests were performed using same source geometry as in source material study with AlO{sub 2} plasma chamber and multicusp confinement. The highest current density was achieved with 4.5 loop solenoid antenna with 6 cm diameter. Slightly lower current density with lower pressure was achieved using tightly wound 3 loop spiral antenna with 3.3 cm ID and 6 cm OD
    corecore