1,605 research outputs found
Nominal Logic Programming
Nominal logic is an extension of first-order logic which provides a simple
foundation for formalizing and reasoning about abstract syntax modulo
consistent renaming of bound names (that is, alpha-equivalence). This article
investigates logic programming based on nominal logic. We describe some typical
nominal logic programs, and develop the model-theoretic, proof-theoretic, and
operational semantics of such programs. Besides being of interest for ensuring
the correct behavior of implementations, these results provide a rigorous
foundation for techniques for analysis and reasoning about nominal logic
programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as
of July 23, 200
Recommended from our members
An Infrared Free Electron Laser System for the Proposed Chemical Dynamics Research Laboratory at LBL Based on a 500 MHz Superconducting Linac
Recommended from our members
Design of a Superconducting Linear Accelerator for an Infrared Free Electron Laser of the Proposed Chemical Dynamics Research Laboratory at LBL
Assessing the Effects of a Program to Promote Energy-Efficiency Upgrades in Existing Homes
Energy efficient mortgages (EEMs) are
intended to mitigate some of the financial barriers to
upgrading the energy efficiency of existing (and
sometimes new) houses. The Time of Sale Energy
Renovation Program (TOSER) is designed to
overcome key obstacles that have limited the use of
EEMs when existing homes are sold. Conducted by
Staples-Hutchinson for Pacific Gas and Electric, the
Program primarily provides seminars to real estate
agents and lenders to educate them about the
characteristics and benefits of EEMs. EEMs typically
allow the buyer to include cost-effective efficiency
upgrades in her mortgage. This paper presents an
overview of the TOSER Program and the results of
the third and fourth evaluation of this Program. This
study relied on market actor interviews and statistical
analyses of key program data to identify program
impacts and opportunities to improve program
effectiveness
The changing of the guard: groupwork with people who have intellectual disabilities
This paper considers the impact of service systems on group activities. It describes an inter-professional groupwork project facilitated by a social worker and a community nurse. The project provided an emancipatory experience for a group of adults who had intellectual disabilities. The group was charged with the task of reviewing and updating the recruitment and interview processes used by a 'Learning Disability Partnership Board', when employing new support workers.
The paper begins with a brief history of intellectual disability and provides a context to the underpinning philosophical belief that people should be encouraged and supported to inhabit valued social roles no matter what disability they may have. It then identifies the ways in which the sponsoring health, education and social care services impacted on the creation and development of a groupwork project. It might have been expected that the nature of the intellectual disability would have been the major influence on group process. However the paper reveals that organisational constraints had a significant impact on group functioning. Issues including, staffing budgets and transport contracts impacted on group process and function.
The results of the project show how, with adequate support, people with intellectual disability can make important decisions that have long-reaching impacts on the services
CEM03 and LAQGSM03 - new modeling tools for nuclear applications
An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions
realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String
Model (LAQGSM) have been developed recently at LANL to describe reactions
induced by particles and nuclei for a number of applications. Our CEM2k and
LAQGSM merged with the GEM2 evaporation/fission code by Furihata have
predictive powers comparable to other modern codes and describe many reactions
better than other codes; therefore both our codes can be used as reliable event
generators in transport codes for applications. During the last year, we have
made a significant improvements to the intranuclear cascade parts of CEM2k and
LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies
to 10 GeV and higher. We have produced in this way improved versions of our
codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes
and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for
different reactions compared with predictions by other models, as well as
examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics:
Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics
Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200
Depths and Thermal Habitat Used by Large versus Small Northern Pike in Three Minnesota Lakes
We monitored depths and temperatures used by large (>71‐cm) versus small Northern Pike Esox lucius in three north‐central Minnesota lakes with either acoustic telemetry or archival tags. Individual Northern Pike demonstrated flexibility in depths used within a season and between years. The fish had some tolerance for low levels of dissolved oxygen (<3 mg/L), but depth selection was generally constrained by low dissolved oxygen in summer and winter. The fish more fully exploited all available depths during winter and thermal turnover periods. During July and August, large Northern Pike tended to follow the thermocline into cooler water as upper water layers warmed. Selection ratios indicated that large Northern Pike preferred water temperatures of 16–21°C during August when temperatures up to 28°C were available. In two lakes providing dense overhead cover from water lilies in shallow water, small Northern Pike used warmer, shallower water compared with large fish during summer. In a third lake providing no such cover, small fish were more often in deeper, cooler water. For small Northern Pike, temperature seemed to be a secondary habitat consideration behind the presence of shallow vegetated cover. This study provided detailed temperature selection information that will be useful when considering temperature as an ecological resource for different sizes of Northern Pike.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141595/1/tafs1629.pd
Experiments with planar inductive ion source meant for creation ofH+ Beams
In this article the effect of different engineering parameters of an rf-driven ion sources with external spiral antenna and quartz disk rf-window are studied. Paper consists of three main topics: The effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species and the effect of different antenna geometries on the extracted current density. The operation gas pressure as a function of the plasma chamber diameter, was studied. This was done with three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum and alumina (AlO{sub 2}). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. Highest proton fraction of {approx} 8% at 2000 W of rf-power and at pressure of 1.3 Pa was measured using AlO{sub 2} plasma chamber and no multicusp confinement. For all the compared ion sources at 1000W of rf-power, source with multicusp confinement and AlO2 plasma chamber yields highest current density of 82.7 mA/cm{sup 2} at operation pressure of 4 Pa. From the same source highest measured current density of 143 mA/cm{sup 2} at 1.3 Pa and 2200W of rf-power was achieved. Multicusp confinement increased the maximum extracted current up to factor of two. Plasma production with different antenna geometries was also studied. Antenna tests were performed using same source geometry as in source material study with AlO{sub 2} plasma chamber and multicusp confinement. The highest current density was achieved with 4.5 loop solenoid antenna with 6 cm diameter. Slightly lower current density with lower pressure was achieved using tightly wound 3 loop spiral antenna with 3.3 cm ID and 6 cm OD
- …