10,633 research outputs found

    Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence

    Get PDF
    In this paper we calculate Kolmogorov's constant for magnetohydrodynamic turbulence to one loop order in perturbation theory using the direct interaction approximation technique of Kraichnan. We have computed the constants for various Eu(k)/Eb(k)E^u(k)/E^b(k), i.e., fluid to magnetic energy ratios when the normalized cross helicity is zero. We find that KK increases from 1.47 to 4.12 as we go from fully fluid case (Eb=0)(E^b=0) to a situation when Eu/Eb=0.5% E^u/E^b=0.5, then it decreases to 3.55 in a fully magnetic limit (Eu=0)(E^u=0). When Eu/Eb=1E^u/E^b=1, we find that K=3.43K=3.43.Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199

    Incompressible Turbulence as Nonlocal Field Theory

    Full text link
    It is well known that incompressible turbulence is nonlocal in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is nonlocal in Fourier space as well. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using nonlocal field theory. Energy spectrum and renormalized parameters will be discussed.Comment: 7 pages; Talk presented in Conference on "Perspectives in Nonlinear Dynamics (PNLD 2004)" held in Chennai, 200

    Field theoretic calculation of scalar turbulence

    Full text link
    The cascade rate of passive scalar and Bachelor's constant in scalar turbulence are calculated using the flux formula. This calculation is done to first order in perturbation series. Batchelor's constant in three dimension is found to be approximately 1.25. In higher dimension, the constant increases as d1/3d^{1/3}.Comment: RevTex4, publ. in Int. J. Mod. Phy. B, v.15, p.3419, 200

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for ddc2.2d \ge d_c \approx 2.2. The renormalized viscosity ν\nu^* and resistivity η\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν=0.36\nu^*=0.36 and η=0.85\eta^*=0.85. As rAr_A is decreased, ν\nu^* increases and η\eta^* decreases, untill rA0.25r_A \approx 0.25 where both ν\nu^* and η\eta^* are approximately zero. For large dd, both ν\nu^* and η\eta^* vary as d1/2d^{-1/2}. The renormalized parameters for the case σc1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001

    A Four-Point Probe for Resistivity Measurements of Semiconductors

    Get PDF

    Local shell-to-shell energy transfer via nonlocal Interactions in fluid turbulence

    Full text link
    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wavenumber shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimension, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the near-by shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.Comment: 10 pages, Revtex

    Large-Eddy Simulations of Fluid and Magnetohydrodynamic Turbulence Using Renormalized Parameters

    Full text link
    In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters. The parameters calculated using field theory have been taken from recent papers by Verma [Phys. Rev. E, 2001; Phys. Plasmas, 2001]. We have carried out LES on 64364^3 grid. These results match quite well with direct numerical simulations of 1283128^3. We show that proper choice of parameter is necessary in LES.Comment: 12 pages, 4 figures: Proper figures inserte

    On the Growth of Single Crystals of Naphthalene

    Get PDF

    Inventory of Important Fodder Plants of Ladakh Himalaya

    Get PDF
    In Ladakh, livestock rearing is a major activity in the livelihoods of the population and contributes greatly to income generation in the region and therefore alleviating poverty. In agro-pastoral animal husbandry systems of Leh, Khaltsey, and Nubra blocks and limited areas in Nyoma and Durbok, villagers live in settled communities and practice sedentary agriculture, but they also keep relatively large herds of livestock to augment income and meet dietary and fibre subsistence needs (Ahmed, 2002). Due to prolonged and extreme cold winter, the agriculture season is very short which starts from May and ends by September depending upon different altitudes. The major constraint to livestock production is winter season feed shortage. The annual growth rate of livestock is limited by forage quality and quantity especially in the winter season. The flora of cold desert Ladakh comes under alpine and high alpine zone, which is situated between 2700m to 6000m. The high altitude flora is mainly dominated by dwarf bushes or shrubs (Singh, 2009). In most parts of the region, the livestock feed on alpine pastures and are to be stall fed for the remaining almost seven months as the land is covered with thick layers of snow. This necessitates production and storage of large quantities of fodder. Accordingly in single cropped areas, the farmers put more area under fodder crops than the cereal crops and further substantiate it with all kinds of grasses and edible plant material collected from areas beyond farmlands. The use of grasses, legumes and other browse trees and shrubs as supplementary feed is therefore seen as a panacea in bridging this nutritional gap for livestock production in the region (Jadhav et al., 2009). While some information is available on the flora of Ladakh, this cannot be called satisfactory and final; as these include all kinds of plants, which may or may not be suitable as forage and fodder. Overall, lack of data and inventory on forage plant species is a hindrance to planning and formulation of schemes. Through this study, efforts have been made to document the available fodder plants for suitable future use

    Fractional Order Thermoelastic Deflection in a Thin Circular Plate

    Get PDF
    In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat conduction equation is used to model a thin circular plate, whose lower surface is maintained at zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed and clamped. Integral transform technique is used to derive the analytical solutions in the physi-cal domain. The numerical results for temperature distributions and thermal deflection are com-puted and represented graphically for Copper material
    corecore