215 research outputs found

    Variational separable expansion scheme for two-body Coulomb-scattering problems

    Full text link
    We present a separable expansion approximation method for Coulomb-like potentials which is based on Schwinger variational principle and uses Coulomb-Sturmian functions as basis states. The new scheme provides faster convergence with respect to our formerly used non-variational approach.Comment: some typos correcte

    Ample consumption period available until use-by dates: a potential, marketing position for store brands

    Get PDF
    Traditionally store brands in Australia are viewed with suspicion in regard to their quality and are usually purchased because of the "value for money" that they offer. Australian supermarket majors are considering introducing a new suite of store brands in the higher price brackets. The danger of moving upscale however is that these store brands are relinquishing their value for money appeal and will come head to head with the manufactured brands. Store brands will now require some quality dimension to compete. This paper after studying the attitudes and behavioural response of grocery shoppers to use by dates, is proposing that that the promise of "generous" use-by dates as a surrogate for quality, could be considered as a positioning plank to promote store brands as alternatives to manufactured brands. Logit analysis is employed to explain shoppers' perception and response to use-by dates, of products that they regularly buy, and of alternative products which they have never bought before if the use-by dates of their regular items are perceived to be too shor

    Continued fraction representation of the Coulomb Green's operator and unified description of bound, resonant and scattering states

    Full text link
    If a quantum mechanical Hamiltonian has an infinite symmetric tridiagonal (Jacobi) matrix form in some discrete Hilbert-space basis representation, then its Green's operator can be constructed in terms of a continued fraction. As an illustrative example we discuss the Coulomb Green's operator in Coulomb-Sturmian basis representation. Based on this representation, a quantum mechanical approximation method for solving Lippmann-Schwinger integral equations can be established, which is equally applicable for bound-, resonant- and scattering-state problems with free and Coulombic asymptotics as well. The performance of this technique is illustrated with a detailed investigation of a nuclear potential describing the interaction of two α\alpha particles.Comment: 7 pages, 4 ps figures, revised versio

    Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions

    Get PDF
    A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the e++He^++H system both below and above the H(n=2)H(n=2) threshold. We found excellent agreements with previous calculations in most cases.Comment: 12 pages, 3 figure

    Resonant-state solution of the Faddeev-Merkuriev integral equations for three-body systems with Coulomb potentials

    Get PDF
    A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The ee+ee^- e^+ e^- S-state resonances up to n=5n=5 threshold are calculated.Comment: 6 pages, 2 ps figure

    Electron-hydrogen scattering in Faddeev-Merkuriev integral equation approach

    Get PDF
    Electron-hydrogen scattering is studied in the Faddeev-Merkuriev integral equation approach. The equations are solved by using the Coulomb-Sturmian separable expansion technique. We present SS- and PP-wave scattering and reactions cross sections up to the H(n=4)H(n=4) threshold.Comment: 2 eps figure

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST
    corecore