48 research outputs found

    Fidelity for displaced squeezed states and the oscillator semigroup

    Full text link
    The fidelity for two displaced squeezed thermal states is computed using the fact that the corresponding density operators belong to the oscillator semigroup.Comment: 3 pages, REVTEX, no figures, submitted to Journal of Physics A, May 5, 199

    Statistical distinguishability between unitary operations

    Get PDF
    The problem of distinguishing two unitary transformations, or quantum gates, is analyzed and a function reflecting their statistical distinguishability is found. Given two unitary operations, U1U_1 and U2U_2, it is proved that there always exists a finite number NN such that U1NU_1^{\otimes N} and U2NU_2^{\otimes N} are perfectly distinguishable, although they were not in the single-copy case. This result can be extended to any finite set of unitary transformations. Finally, a fidelity for one-qubit gates, which satisfies many useful properties from the point of view of quantum information theory, is presented.Comment: 6 pages, REVTEX. The perfect distinguishability result is extended to any finite set of gate

    Bures distance between two displaced thermal states

    Full text link
    The Bures distance between two displaced thermal states and the corresponding geometric quantities (statistical metric, volume element, scalar curvature) are computed. Under nonunitary (dissipative) dynamics, the statistical distance shows the same general features previously reported in the literature by Braunstein and Milburn for two--state systems. The scalar curvature turns out to have new interesting properties when compared to the curvature associated with squeezed thermal states.Comment: 3 pages, RevTeX, no figure

    Non-adaptive Measurement-based Quantum Computation and Multi-party Bell Inequalities

    Full text link
    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as Measurement-based Quantum Computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities still remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focussing on deterministic computation of Boolean functions, in which natural generalisations of the Greenberger-Horne-Zeilinger (GHZ) paradox emerge; we then explore probabilistic computation, via which multipartite Bell Inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.Comment: 13 pages, 4 figures, final version accepted for publicatio

    Chow's theorem and universal holonomic quantum computation

    Full text link
    A theorem from control theory relating the Lie algebra generated by vector fields on a manifold to the controllability of the dynamical system is shown to apply to Holonomic Quantum Computation. Conditions for deriving the holonomy algebra are presented by taking covariant derivatives of the curvature associated to a non-Abelian gauge connection. When applied to the Optical Holonomic Computer, these conditions determine that the holonomy group of the two-qubit interaction model contains SU(2)×SU(2)SU(2) \times SU(2). In particular, a universal two-qubit logic gate is attainable for this model.Comment: 13 page

    Fidelity for Multimode Thermal Squeezed States

    Full text link
    In the theory of quantum transmission of information the concept of fidelity plays a fundamental role. An important class of channels, which can be experimentally realized in quantum optics, is that of Gaussian quantum channels. In this work we present a general formula for fidelity in the case of two arbitrary Gaussian states. From this formula one can get a previous result (H. Scutaru, J. Phys. A: Mat. Gen {\bf 31}, 3659 (1998)), for the case of a single mode; or, one can apply it to obtain a closed compact expression for multimode thermal states.Comment: 5 pages, RevTex, submitted to Phys. Rev.

    Measuring the Quantum State of a Large Angular Momentum

    Get PDF
    We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1) x (2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the quantization axis. We implement the protocol for laser cooled Cesium atoms in the 6S_{1/2}(F=4) hyperfine ground state and apply it to a variety of test states prepared by optical pumping and Larmor precession. A comparison of input and measured states shows typical reconstruction fidelities of about 0.95.Comment: 4 pages, 6 figures, submitted to PR

    Universal Quantum Cloning in Cavity QED

    Get PDF
    We propose an implementation of an universal quantum cloning machine [UQCM, Hillery and Buzek, Phys. Rev. A {\bf 56}, 3446 (1997)] in a Cavity Quantum Electrodynamics (CQED) experiment. This UQCM acts on the electronic states of atoms that interact with the electromagnetic field of a high QQ cavity. We discuss here the specific case of the 121 \to 2 cloning process using either a one- or a two-cavity configuration

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    Asymmetric universal entangling machine

    Full text link
    We give a definition of asymmetric universal entangling machine which entangles a system in an unknown state to a specially prepared ancilla. The machine produces a fixed state-independent amount of entanglement in exchange to a fixed degradation of the system state fidelity. We describe explicitly such a machine for any quantum system having dd levels and prove its optimality. We show that a d2d^2-dimensional ancilla is sufficient for reaching optimality. The introduced machine is a generalization to a number of widely investigated universal quantum devices such as the symmetric and asymmetric quantum cloners, the symmetric quantum entangler, the quantum information distributor and the universal-NOT gate.Comment: 28 pages, 3 figure
    corecore