210,381 research outputs found

    Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N\approx60

    Full text link
    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N60N\approx60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree-Fock-Bogogliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98^{98}Sr and 100^{100}Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98^{98}Sr and 100^{100}Zr. The resultant excitation energy of 02+0^+_2 state and E0 transition strength ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ\gamma deformation in 100^{100}Zr gives rise to the larger ρ2(E0;02+01+)\rho^2(E0;0^+_2\rightarrow0^+_1) than that in 98^{98}Sr.Comment: 1 table, 11 figures, 23 page

    Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models

    Full text link
    We explore the effects of nuclear masses on the temperature and neutron density conditions required for r-process nucleosynthesis using four nuclear mass models augmented by the latest atomic mass evaluation. For each model we derive the conditions for producing the observed abundance peaks at mass numbers A ~ 80, 130, and 195 under the waiting-point approximation and further determine the sets of conditions that can best reproduce the r-process abundance patterns (r-patterns) inferred for the solar system and observed in metal-poor stars of the Milky Way halo. In broad agreement with previous studies, we find that (1) the conditions for producing abundance peaks at A ~ 80 and 195 tend to be very different, which suggests that, at least for some nuclear mass models, these two peaks are not produced simultaneously; (2) the typical conditions required by the critical waiting-point (CWP) nuclei with the N = 126 closed neutron shell overlap significantly with those required by the N=82 CWP nuclei, which enables coproduction of abundance peaks at A ~ 130 and 195 in accordance with observations of many metal-poor stars; and (3) the typical conditions required by the N = 82 CWP nuclei can reproduce the r-pattern observed in the metal-poor star HD 122563, which differs greatly from the solar r-pattern. We also examine how nuclear mass uncertainties affect the conditions required for the r-process and identify some key nuclei including76Ni to 78Ni, 82Zn, 131Cd, and 132Cd for precise mass measurements at rare-isotope beam facilities.Comment: 28 pages,9 figures,1 tabl

    Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian

    Full text link
    The low-lying collective states in Sn isotopes are studied by a five-dimensional collective Hamiltonian with parameters determined from the triaxial relativistic mean-field calculations using the PC-PK1 energy density functional. The systematics for both the excitation energies of 21+2^+_1 states and B(E2;01+21+)B(E2;0^+_1\to 2^+_1) values are reproduced rather well, in particular, the enhanced E2 transitions in the neutron-deficient Sn isotopes with N<66. We show that the gradual degeneracy of neutron levels 1g7/2 and 2d5/2 around the Fermi surface leads to the increase of level density and consequently the enhanced paring correlations from N=66 to 58. It provokes a large quadrupole shape fluctuation around the spherical shape, and leads to an enhanced collectivity in the isotopes around N=58.Comment: 5 pages, 4 figures, accepted for publication in Physics Letters

    Evaluation of ASTER GDEM ver2 using GPS measurements and SRTM ver4.1 in China

    Get PDF
    The freely available ASTER GDEM ver2 was released by NASA and METI on October 17, 2011. As one of the most complete high resolution digital topographic data sets of the world to date, the ASTER GDEM covers land surfaces between 83°N and 83°S at a spatial resolution of 1 arc-second and will be a useful product for many applications, such as relief analysis, hydrological studies and radar interferometry. The stated improvements in the second version of ASTER GDEM benefit from finer horizontal resolution, offset adjustment and water body detection in addition to new observed ASTER scenes. This study investigates the absolute vertical accuracy of the ASTER GDEM ver2 at five study sites in China using ground control points (GCPs) from high accuracy GPS benchmarks, and also using a DEM-to-DEM comparison with the Consultative Group for International Agriculture Research Consortium for Spatial Information (CGIAR-CSI) SRTM DEM (Version 4.1). And then, the results are separated into GlobCover land cover classes to derive the spatial pattern of error. It is demonstrated that the RMSE (19m) and mean (-13m) values of ASTER GDEM ver2 against GPS-GCPs in the five study areas is lower than its first version ASTER GDEM ver1 (26m and -21m) as a result of the adjustment of the elevation offsets in the new version. It should be noted that the five study areas in this study are representative in terms of terrain types and land covers in China, and even for most of mid-latitude zones. It is believed that the ASTER GDEM offers a major alternative in accessibility to high quality elevation data

    Effects of current on vortex and transverse domain walls

    Full text link
    By using the spin torque model in ferromagnets, we compare the response of vortex and transverse walls to the electrical current. For a defect-free sample and a small applied current, the steady state wall mobility is independent of the wall structure. In the presence of defects, the minimum current required to overcome the wall pinning potential is much smaller for the vortex wall than for the transverse wall. During the wall motion, the vortex wall tends to transform to the transverse wall. We construct a phase diagram for the wall mobility and the wall transformation driven by the current

    Low-lying states in 30^{30}Mg: a beyond relativistic mean-field investigation

    Full text link
    The recently developed model of three-dimensional angular momentum projection plus generator coordinate method on top of triaxial relativistic mean-field states has been applied to study the low-lying states of 30^{30}Mg. The effects of triaxiality on the low-energy spectra and E0 and E2 transitions are examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th September 2010, Polan

    Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

    Full text link
    The rapid structural change in low-lying collective excitation states of neutron-rich Sr and Zr isotopes is tudied by solving a five-dimensional collective Hamiltonian with parameters determined by both relativistic mean-field and non-relativistic Skyrme-Hartree-Fock calculations using the PC-PK1 and SLy4 forces respectively. Pair correlations are treated in BCS method with either a separable pairing force or a density-dependent zero-range force. The isotope shifts, excitation energies, electric monopole and quadrupole transition strengths are calculated and compared with corresponding experimental data. The calculated results with both the PC-PK1 and SLy4 forces exhibit a picture of spherical-oblate-prolate shape transition in neutron-rich Sr and Zr isotopes. Compared with the experimental data, the PC-PK1 (or SLy4) force predicts a more moderate (or dramatic) change in most of the collective properties around N=60. The underlying microscopic mechanism responsible for the rapid transition is discussed.Comment: 10 pages (twocolumn), 10 figure
    corecore