42,861 research outputs found

    Antenna Miniaturization Based on Supperscattering Effect

    Get PDF
    Antennas are essential components of all existing radio equipments. The miniaturization of antenna is a key issue of antenna technology. Based on supperscattering effect, we found that when a small horn antenna is located inside of a dielectric core and covered with a complementary layer, its far field radiation pattern will be equivalent to a large horn antenna. The complementary layer with only axial parameters varying with radius is obtained using coordinate transformation theory. Besides, the influence of loss and perturbations of parameters on supperscattering effect is also investigated. Results show that the device is robust against the perturbation in the axial material parameters when the refractive index is kept invariant. Full-wave simulations based on finite element method are performed to validate the design

    Object DUO 2: A New Binary Lens Candidate

    Get PDF
    We present the light curve of an unusual variable object, DUO 2, detected during the search for microlensing events by the DUO project. The star remained stable for more than 150 days before it brightened by more than two magnitudes in 6 days in the B and R bands. The light curves are achromatic during the variability. We consider possible explanations of the photometric behavior, with particular emphasis on the binary lens interpretation of the event. The masses of the lenses are quite small, with the companion possibly in the range of a brown dwarf or even a few times of Jupiter. We report evidence of blending of the source by a companion through the first detection of shift in the light centroid among all the microlensing experiments. This shift sets a lower limit of 0.30.3^{\prime\prime} on the separation between the stars. The best lens model obtained requires moderate blending, which was what motivated us to check the centroid shift that was subsequently found. The best lens model predicts a separation of 11^{\prime\prime} between the two blended stars. This prediction was recently tested using two CCD images taken under good seeing conditions. Both images show two components. Their separation and position angle are in good agreement with our model.Comment: uuencoded, compressed PostScript, 4 pages, 4 figures (in text). Accepted for publication in Astronomy and Astrophysics Letter

    Radiative and leptonic decays of the pseudoscalar charmonium state ηc\eta_c

    Full text link
    The radiative and leptonic decays of ηcγγ\eta_c\to \gamma\gamma and ηcl+l\eta_c\to l^+l^- are studied. For ηcγγ\eta_c\to \gamma\gamma decay, the second-order electromagnetic tree-level diagram gives the leading contribution. The decay rate of ηcγγ\eta_c\to \gamma\gamma is calculated, the prediction is in good agreement with the experimental data. For \eta_c\to l^+\l^-, both the tree and loop diagrams are calculated. The analysis shows that the loop contribution dominates, the contribution of tree diagram with Z0Z^0 intermediate state can only modifies the decay rate by less than 1%. The prediction of the branching ratios of ηce+e\eta_c\to e^+e^- and μ+μ\mu^+\mu^- are very tiny within the standard model. The smallness of these predictions within the standard model makes the leptonic decays of ηc\eta_c sensitive to physics beyond the standard model. Measurement of the leptonic decay may give information of new physics.Comment: 9 pages, 4 figures, RevTex, small change, version to appear in Phys. Rev.
    corecore