17,527 research outputs found

    Bounding the mass of the graviton using binary pulsar observations

    Get PDF
    The close agreement between the predictions of dynamical general relativity for the radiated power of a compact binary system and the observed orbital decay of the binary pulsars PSR B1913+16 and PSR B1534+12 allows us to bound the graviton mass to be less than 7.6 x 10^{-20} eV with 90% confidence. This bound is the first to be obtained from dynamic, as opposed to static-field, relativity. The resulting limit on the graviton mass is within two orders of magnitude of that from solar system measurements, and can be expected to improve with further observations.Comment: 16 pages, 1 figure. Added appendix on other choices for mass ter

    Regression with strongly correlated data

    Get PDF
    This paper discusses linear regression of strongly correlated data that arises, for example, in magnetohydrodynamic equilibrium reconstructions. We have proved that, generically, the covariance matrix of the estimated regression parameters for fixed sample size goes to zero as the correlations become unity. That is, in this limit the estimated parameters are known with perfect accuracy. Simple examples are shown to illustrate this effect and the nature of the exceptional cases in which the estimate covariance does not go to zero

    Swift Pointing and Gravitational-Wave Bursts from Gamma-Ray Burst Events

    Full text link
    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based ``figure of merit'' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts.Comment: iop style, 1 figure, 6 pages, presented at GWDAW 200

    Addressing LISA Science Analysis Challenges

    Get PDF
    The principal goal of the \emph{LISA Science Analysis Workshop} is to encourage the development and maturation of science analysis technology in preparation for LISA science operations. Exactly because LISA is a pathfinder for a new scientific discipline -- gravitational wave astronomy -- LISA data processing and science analysis methodologies are in their infancy and require considerable maturation if they are to be ready to take advantage of LISA data. Here we offer some thoughts, in anticipation of the LISA Science Analysis Workshop, on analysis research problems that demonstrate the capabilities of different proposed analysis methodologies and, simultaneously, help to push those techniques toward greater maturity. Particular emphasis is placed on formulating questions that can be turned into well-posed problems involving tests run on specific data sets, which can be shared among different groups to enable the comparison of techniques on a well-defined platform.Comment: 7 page

    The Testbed for LISA Analysis Project

    Full text link
    The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation and comparison of different methods for LISA science data analysis, by the broad LISA Science Community, to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the communities that have developed to model and to analyze the LISA science data stream; a web-based clearinghouse (at ) providing SLDP software libraries, relevant software, papers and other documentation, and a repository for SLDP data sets; a set of mailing lists for communication between and among LISA simulators and LISA science analysts; a problem tracking system for SLDP support; and a program of workshops to allow the burgeoning LISA science community to further refine the SLDP definition, define specific LISA science analysis challenges, and report their results. This note describes the TLA Project, the resources it provides immediately, its future plans, and invites the participation of the broader community in the furtherance of its goals.Comment: 5 pages, no figure
    • 

    corecore