91 research outputs found

    Size quantization of Dirac fermions in graphene constrictions

    Full text link
    Quantum point contacts (QPCs) are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wave-length in high-quality bulk graphene can be tuned up to hundreds of nanometers, the observation of quantum confinement of Dirac electrons in nanostructured graphene systems has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically-defined graphene constrictions. At high charge carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity (vF1.5×106m/sv_F \approx 1.5 \times 10^6 m/s) in our graphene constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.Comment: 24 pages including 20 figures and 1 table. Corrected typos. To appear in Nature Communication

    Exchange and correlation effects on the plasmon dispersions and the Coulomb drag in low-density electron bilayers

    Full text link
    We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bi-layer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and inter-layer correlation effects. We observe that both plasmon modes are strongly affected by xc corrections. After the inclusion of the complex dynamic xc kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. And this is in stark contrast to the tendency obtained within the RPA that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the xc corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by M. Kellogg {\it et al.}, Solid State Commun. \textbf{123}, 515 (2002).Comment: 28 pages, 15 figure

    Frictional Drag between Two Dilute Two-Dimensional Hole Layers

    Full text link
    We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 dependence which cannot be explained by phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest that this deviation results from interaction effects in the dilute regime.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Lett. Added single layer transport dat

    Contribution of soft-bodied meiofaunal taxa to Italian marine biodiversity

    Get PDF
    Meiofauna includes an astonishing diversity of organisms, whose census is far from being complete. Most classic ecological studies have focused on hard-bodied Ecdysozoan taxa (notably Copepoda and Nematoda), whose cuticle allows determination at species-level after fixation, rather than soft-bodied, Spiralian taxa, which most often lose any diagnostic feature in fixed samples. Yet, metabarcoding studies have recently revealed a species-richness of softbodied taxa comparable, and in cases superior, to that of Copepoda and Nematoda together. However, given objective difficulties inherent to their study, which necessarily has to be performed on living individuals, and their limited utilisation for ecological and applicative research, taxonomic expertise on soft-bodied organisms has declined over the years, and diversity of these phyla in most areas of the world is presently completely unknown. Here we present an expert-based survey of current knowledge on the composition and distribution of soft-bodied meiofaunal taxa in Italy, with special references to the predominantly or exclusively meiobenthic phyla Gastrotricha, Gnathostomulida, Platyhelminthes, Rotifera, Xenacoelomorpha, and macrofaunal taxa with conspicuous meiofaunal representatives (Annelida, Mollusca and Nemertea). A total of 638 described species have been reported from Italian coasts; furthermore, the existence of a large number of undescribed species is mentioned. Knowledge of Annelida, Gastrotricha, and Rotifera appears particularly detailed, placing Italy among the best-known country worldwide. In contrast, knowledge of Platyhelminthes and Xenacoelomorpha appears patchy, and limited to few areas. Sampling effort has been uneven, with most species recorded from the Tyrrhenian Sea, while large sections of the Adriatic and Ionian seas have been poorly explored. Results highlight the role that Marine Biological Stations, notably the Zoological Station “Anton Dohrn” in Naples, have had in promoting the study of soft-bodied taxa in Ital

    The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy

    Full text link
    We report on the observation of the yellow exciton Lyman series up to the fourth term in Cu2O by time-resolved mid-infrared spectroscopy. The dependence of the oscillator strength on the principal quantum number n can be well reproduced using the hydrogenic model including an AC dielectric constant, and precise information on the electronic structure of the 1s exciton state can be obtained. A Bohr radius a_{1s}=7.9 A and a 1s-2p transition dipole moment \mu_{1s-2p}= 4.2 eA were found

    Frictional drag between non-equilibrium charged gases

    Full text link
    The frictional drag force between separated but coupled two-dimensional electron gases of different temperatures is studied using the non-equilibrium Green function method based on the separation of center-of-mass and relative dynamics of electrons. As the mechanisms of producing the frictional force we include the direct Coulomb interaction, the interaction mediated via virtual and real TA and LA phonons, optic phonons, plasmons, and TA and LA phonon-electron collective modes. We found that, when the distance between the two electron gases is large, and at intermediate temperature where plasmons and collective modes play the most important role in the frictional drag, the possibility of having a temperature difference between two subsystems modifies greatly the transresistivity.Comment: 8figure

    Die familie markus

    No full text
    corecore