6,620 research outputs found
Recommended from our members
Applying an abstract data structure description approach to parallelizing scientific pointer programs
Even though impressive progress has been made in the area of parallelizing scientific programs with arrays, the application of similar techniques to programs with pointer data structures has remained difficult. Unlike arrays which have a small number of well-defined properties that can be utilized by a parallelizing compiler, pointer data structures are used to implement a wide variety of structures that exhibit a much more diverse set of properties. The complexity and diversity of such properties means that, in general, scientific programs with pointer data structures cannot be effectively analyzed by an optimizing and parallelizing compiler.In order to provide a system in which the compiler can fully utilize the properties of different types of pointer data structures, we have developed a mechanism for the Abstract Description of Data Structures (ADDS). With our approach, the programmer can explicitly describe important properties such as dimensionality of the pointer data structure, independence of dimensions, and direction of traversal. These abstract descriptions of pointer data structures are then used by the compiler to guide analysis, optimization, and parallelization.In this paper we summarize the ADDS approach through the use of numerous examples of data structures used in scientific computations, we illustrate how such declarations are natural and non-tedious to specify, and we show how the ADDS declarations can be used to improve compile-time analysis. In order to demonstrate the viability of our approach, we show how such techniques can be used to parallelize an important class of scientific codes which naturally use recursive pointer data structures. In particular, we use our approach to develop the parallelization of an N-body simulation that is based on a relatively complicated pointer data structure, and we report the speedup results for a Sequent multiprocessor
High Latitude Radio Emission in a Sample of Edge-On Spiral Galaxies
We have mapped 16 edge-on galaxies at 20 cm using the VLA. For 5 galaxies, we
could form spectral index, energy and magnetic field maps. We find that all but
one galaxy show evidence for non-thermal high latitude radio continuum
emission, suggesting that cosmic ray halos are common in star forming galaxies.
The high latitude emission is seen over a variety of spatial scales and in
discrete and/or smooth features. In general, the discrete features emanate from
the disk, but estimates of CR diffusion lengths suggest that diffusion alone is
insufficient to transport the particles to the high latitudes seen (> 15 kpc in
one case). Thus CRs likely diffuse through low density regions and/or are
assisted by other mechanisms (e.g. winds). We searched for correlations between
the prevalence of high latitude radio emission and a number of other
properties, including the global SFR, supernova input rate per unit star
forming, and do not find clear correlations with any of these properties.Comment: 40 pages of text, 3 figures, 6 tables, and an appendix of 21 jpeg
figures (which is a radio continuum catalogue of 17 galaxies). to appear in
A. J. (around January 1999
A correction procedure for the errors in single-crystal intensities due to the inhomogeneity of the primary X-ray beam
Graphite monochromators are known to give rise to non-homogeneous primary X-ray beams. When intensities of single crystals are measured the effective cross section of a non-spherical crystal in the X-ray beam depends on its orientation in the beam. Therefore, systematic errors in the measured integrated intensities are introduced by the inhomogeneity of the incoming beam. A correction for these errors can be made, knowing the intensity profile of the primary beam and the dimensions and orientation of the crystal in the beam. The correction can conveniently be applied with the absorption correction. Examples of the corrections are given for crystals with rational boundary planes. It is shown that the intensity of an X-ray reflection as a function of the rotation about the scattering vector ( rotation) can be calculated with fair accuracy. In some cases (large elongated crystals in an inhomogeneous beam) correction for absorption only may give results which are worse than those with no correction at all
The First Supernovae: Source Density And Observability Of Pair Instability Supernovae
Theoretical models predict that some of the first stars ended their lives as extremely energetic Pair Instability Supernovae (PISNe). With energies approaching 10(53) erg, these supernovae are expected to be within the detection limits of the upcoming James Webb Space Telescope (JWST) allowing observational constraints to be placed on the properties of the first stars. We estimate the source density of PISNe using a semi-analytic Press-Schecter based approach informed by cosmological simulations, with an upper limit of similar to 0.2 PISNe visible per JWST field of view at any given time. We find that the main obstacle to observing PISNe is their scarcity rather than their faintness. Given this we suggest a mosaic style search strategy for detecting PISNe from the first stars.Astronom
Instant Two-Body Equation in Breit Frame
A quasipotential formalism for elastic scattering from relativistic bound
states is based on applying an instant constraint to both initial and final
states in the Breit frame. This formalism is advantageous for the analysis of
electromagnetic interactions because current conservation and four momentum
conservation are realized within a three-dimensional formalism. Wave functions
are required in a frame where the total momentum is nonzero, which means that
the usual partial wave analysis is inapplicable. In this work, the
three-dimensional equation is solved numerically, taking into account the
relevant symmetries. A dynamical boost of the interaction also is needed for
the instant formalism, which in general requires that the boosted interaction
be defined as the solution of a four-dimensional equation. For the case of a
scalar separable interaction, this equation is solved and the Lorentz
invariance of the three-dimensional formulation using the boosted interaction
is verified. For more realistic interactions, a simple approximation is used to
characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors
Tidally Triggered Star Formation in Close Pairs of Galaxies: Major and Minor Interactions
We study star formation in a sample of 345 galaxies in 167 pairs and compact
groups drawn from the original CfA2 Redshift Survey and from a follow-up search
for companions. We construct our sample with attention to including pairs with
luminosity contrast |\Delta m_R| >= 2. These 57 galaxies with |\Delta m_R| >= 2
provide a set of nearby representative cases of minor interactions, a central
feature of the hierarchical galaxy formation model. Here we report the
redshifts and positions of the 345 galaxies in our sample, and of 136 galaxies
in apparent pairs that are superpositions. In the pairs sample as a whole,
there are strong correlations between the equivalent width of the H\alpha
emission line and the projected spatial and the line-of-sight velocity
separation of the pair. For pairs of small luminosity contrast, |\Delta m_R| <
2, the member galaxies show a correlation between the equivalent width of
H\alpha and the projected spatial separation of the pair. However, for pairs
with large luminosity contrast, |\Delta m_R| >= 2, we detect no correlation
between the equivalent width of H\alpha and the projected spatial separation.
The relative luminosity of the companion galaxy is more important in a
gravitational tidal interaction than the intrinsic luminosity of the galaxy.
Central star formation across the entire pairs sample depends strongly on the
luminosity ratio, |\Delta m_R|, a reasonable proxy for the mass ratio of the
pair; pairs composed of similarly luminous galaxies produce the strongest
bursts of star formation. Pairs with |\Delta m_R| >= 2 rarely have EW(H\alpha)
>~ 70 Ang.Comment: Minor revisions following journal proof
Properties of bow-shock sources at the Galactic center
There are an enigmatic population of massive stars around the Galactic Center
(GC) that were formed some Ma ago. A fraction of these stars has been found to
orbit the supermassive black hole, SgrA*, in a projected clockwise disk, which
suggests that they were formed in a formerly existing dense disk around SgrA*.
We focus on the extended, near-infrared (NIR) sources IRS1W, IRS5, IRS10W, and
IRS21 that have been suggested to be young, massive stars that form bow-shocks
through their interaction with the ISM. Their nature has impeded accurate
determination of their orbital parameters. We aim at establishing their nature
and kinematics to test whether they form part of the clockwise disk. We
performed NIR multi-wavelength imaging using adaptive optics (AO) and sparse
aperture masking (SAM). We introduce a new method for self-calibration of the
SAM PSF in dense stellar fields. The emission mechanism, morphology and
kinematics of the targets were examined via 3D bow-shock models. We confirm
previous findings that IRS21, IRS1W, and IRS5 are bow-shocks created by the
interaction between mass-losing stars and the interstellar gas. The nature of
IRS10W remains unclear. Our modeling shows that the bow-shock-emission is
caused by thermal emission while the scattering of stellar light does not play
any significant role. IRS 1W appears to be a bow-shock produced by an
anisotropic stellar wind or by locally inhomogeneous ISM density. Our best-fit
models provide an estimate of the local proper motion of the ISM in the NA in
agreement with the published models. Assuming that all of the sources are tied
to SgrA*, their orbital planes were obtained via a Monte-Carlo simulation. Our
orbital analysis suggests that they are not part of any of the clockwise disk.
We thus add more evidence to recent findings that a large part of the massive
stars show apparently random orbital orientations.Comment: accepted for publication by A&A, 17 pages, 11 figures, 1 appendi
- …