366 research outputs found

    Discovery of the Orbit of the Transient X ray Pulsar SAX J2103.5+4545

    Full text link
    Using X-ray data from the Rossi X-Ray Timing Explorer (RXTE), we carried out pulse timing analysis of the transient X-ray pulsar SAX J2103.5+4545. An outburst was detected by All Sky Monitor (ASM) October 25 1999 and reached a peak X-ray brightness of 27 mCrab October 28. Between November 19 and December 27, the RXTE/PCA carried out pointed observations which provided us with pulse arrival times. These yield an eccentric orbit (e= 0.4 \pm 0.2) with an orbital period of 12.68 \pm 0.25 days and light travel time across the projected semimajor axis of 72 \pm 6 sec. The pulse period was measured to be 358.62171 \pm 0.00088 s and the spin-up rate (2.50 \pm 0.15) \times 10^{-13} Hz s^{-1}. The ASM data for the February to September 1997 outburst in which BeppoSAX discovered SAX J2103.5+4545 (Hulleman, in't Zand and Heise 1998) are modulated at time scales close to the orbital period. Folded light curves of the 1997 ASM data and the 1999 PCA data are similar and show that the intensity increases at periastron passages.Comment: To appear in The Astrophysical Journal (Letters

    Consequences of Interstellar Absorption for Models of Anomalous X-ray Pulsars

    Get PDF
    We examine properties of thermal radiation emitted by strongly magnetized neutron stars (NSs). In particular, we show that the pulsation amplitudes of the energy-integrated flux are an increasing function of the absorption column density to the source. This is especially important for the interpretation of the Anomalous XX-ray Pulsars (AXPs) as cooling neutron stars with high magnetic fields. We show that the high-pulsation amplitudes observed in these objects are consistent with cooling models, if the large amount of absorption to these sources is taken into account. We also show that cooling models imply inferred radii of the emitting regions on the order of ∌5−6\sim 5-6 times smaller than the actual NS radii, again in agreement with observations.Comment: 6 pages, 2 figures, ApJL in pres

    Imaging X-ray, Optical, and Infrared Observations of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a 5.54s pulsar discovered by Ibrahim et al. (2003) in recent RXTE observations. In a set of short exposures with the Chandra HRC camera we detect a strongly modulated signal (55+/-4% pulsed fraction) with the expected period located at (J2000) 18:09:51.08, -19:43:51.7, with a uncertainty radius of 0.6 arcsec (90% C.L.). Spectra obtained with XMM-Newton are well fitted by a two-component model that typically describes anomalous X-ray pulsars (AXPs), an absorbed blackbody plus power law with parameters kT = 0.67+/-0.01 keV, Gamma=3.7+/-0.2, N_H=(1.05+/-0.05)E22 cm^-2, and Fx(0.5-10 keV) = 3.98E-11 ergs/cm2/s. Alternatively, a 2T blackbody fit is just as acceptable. The location of CXOU J180951.1-194351 is consistent with a point source seen in archival Einstein, Rosat, & ASCA images, when its flux was nearly two orders-of-magnitude fainter, and from which no pulsations are found. The spectrum changed dramatically between the "quiescent" and "active" states, the former can be modeled as a softer blackbody. Using XMM timing data, we place an upper limit of 0.03 lt-s on any orbital motion in the period range 10m-8hr. Optical and infrared images obtained on the SMARTS 1.3m telescope at CTIO show no object in the Chandra error circle to limits V=22.5, I=21.3, J=18.9, & K=17.5. Together, these results argue that CXOU J180951.1-194351 is an isolated neutron star, one most similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197 in various states of luminosity is important for understanding and possibly unifying a growing class of isolated, young neutron stars that are not powered by rotation.Comment: 12 pages, 7 figures, AAS LaTex, uses emulateapj5.sty. Updated to include additional archival data and a new HRC observation. To appear in The Astrophysical Journa

    Visual Search Without Selective Attention: A Cognitive Architecture Account

    Full text link
    A key phenomenon in visual search experiments is the linear relation of reaction time (RT) to the number of objects to be searched (set size). The dominant theory of visual search claims that this is a result of covert selective attention operating sequentially to “bind” visual features into objects, and this mechanism operates differently depending on the nature of the search task and the visual features involved, causing the slope of the RT as a function of set size to range from zero to large values. However, a cognitive architectural model presented here shows these effects on RT in three different search task conditions can be easily obtained from basic visual mechanisms, eye movements, and simple task strategies. No selective attention mechanism is needed. In addition, there are little‐explored effects of visual crowding, which is typically confounded with set size in visual search experiments. Including a simple mechanism for crowding in the model also allows it to account for significant effects on error rate (ER). The resulting model shows the interaction between visual mechanisms and task strategy, and thus it represents a more comprehensive and fruitful approach to visual search than the dominant theory.Visual Search without Selective Attention calls into question the necessity of a covert selective attention mechanism by implementing a formal model that includes basic visual mechanisms, saccades, and simple task strategies. Across three search tasks, the model accounts for response times as well as the proportion of errors observed in human participants, including effects of item crowding in the visual stimulus.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147754/1/tops12406.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147754/2/tops12406_am.pd

    General Relativistic Constraints on Emission Models of Anomalous X-ray Pulsars

    Get PDF
    Most models of anomalous X-ray pulsars (AXPs) account for the observed X-ray spectra and pulsations by means of radiation processes that occur on the surfaces of neutron stars. For any such model, general relativistic deflection of light severely suppresses the amplitude of the observed pulsations. We calculate the expected pulsation amplitudes of AXPs according to various models and compare the results with observations. We show that the high (<= 70%) pulse amplitudes observed in some AXPs can be accounted for only if the surface emission is localized (spot radius <40 degrees) and strongly beamed (cos^n[theta'] with n>2, where theta' is the angle to the normal). These constraints are incompatible with those cooling and magnetar models in which the observed X-rays originate as thermal emission from the neutron-star surface. Accretion models, on the other hand, are compatible with observations for a wide range of parameters. Finally, definitive conclusions cannot be reached on magnetospheric models, since their localization and beaming properties are not well understood.Comment: 7 pages, 9 figures, submitted to The Astrophysical Journa

    Anomalous X-ray Pulsars and Soft gamma-ray Repeaters: Spectral Fits and the Magnetar Model

    Full text link
    The energy source powering the X-ray emission from anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) is still uncertain. In one scenario, the presence of an ultramagnetized neutron star, or ``magnetar'', with B on the order of 10^{14} - 10^{15} G is invoked. To investigate this hypothesis, we have analyzed archival ASCA data for several known AXPs and SGRs, and fitted them with a model in which all or part of the X-ray flux originates as thermal emission from a magnetar. Our magnetar spectral model includes the effects of the anisotropy of the heat flow through an ultramagnetized neutron star envelope, reprocessing by a light element atmosphere, and general relativistic corrections to the observed spectrum. We obtain good fits to the data with radii for the emitting areas which are generally consistent with those expected for neutron stars, in contrast to blackbody (BB) fits, which imply much smaller radii. Furthermore, the inclusion of atmospheric effects results in inferred temperatures which are lower than those implied by BB fits, but however still too high to be accounted by thermal cooling alone. An extra source of heating (possibly due to magnetic field decay) is needed. Despite the harder tail in the spectrum produced by reprocessing of the outgoing flux through the atmosphere, spectral fits still require a considerable fraction of the flux to be in a power-law component.Comment: 14 pages, 2 tables, 1 figure, ApJ in press; note added to Table
    • 

    corecore