2,147 research outputs found
Rate-Based Transition Systems for Stochastic Process Calculi
A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition
Viscoelastic vibration damping identification methods. Application to laminated glass.
Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass
A model checker for performance and dependability properties
Markov chains are widely used in the context of
performance and reliability evaluation of systems of various
nature. Model checking of such chains with respect to
a given (branching) temporal logic formula has been proposed
for both the discrete [8] and the continuous time setting
[1], [3]. In this short paper, we describe the prototype
model checker for discrete and continuous-time
Markov chains, where properties are expressed in appropriate
extensions of CTL.We illustrate the general benefits
of this approach and discuss the structure of the tool
A tool for model-checking Markov chains
Markov chains are widely used in the context of the performance and reliability modeling of various systems. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both discrete [34, 10] and continuous time settings [7, 12]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen-Twente Markov Chain Checker EÎMC2, where properties are expressed in appropriate extensions of CTL. We illustrate the general benefits of this approach and discuss the structure of the tool. Furthermore, we report on successful applications of the tool to some examples, highlighting lessons learned during the development and application of EÎMC2
The influence of holes in the mechanical properties of EWT solar cells
EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes
Microscopic theory of the quantum Hall hierarchy
We solve the quantum Hall problem exactly in a limit and show that the ground
states can be organized in a fractal pattern consistent with the
Haldane-Halperin hierarchy, and with the global phase diagram. We present wave
functions for a large family of states, including those of Laughlin and Jain
and also for states recently observed by Pan {\it et. al.}, and show that they
coincide with the exact ones in the solvable limit. We submit that they
establish an adiabatic continuation of our exact results to the experimentally
accessible regime, thus providing a unified approach to the hierarchy states.Comment: 4 pages, 2 figures. Publishe
- …