552 research outputs found

    Centromere sequence and dynamics in Dictyostelium discoideum

    Get PDF
    Centromeres play a pivotal role in the life of a eukaryote cell, perform an essential and conserved function, but this has not led to a standard centromere structure. It remains currently unclear, how the centromeric function is achieved by widely differing structures. Since centromeres are often large and consist mainly of repetitive sequences they have only been analyzed in great detail in a handful of organisms. The genome of Dictyostelium discoideum, a valuable model organism, was described a few years ago but its centromere organization remained largely unclear. Using available sequence information we reconstructed the putative centromere organization in three of the six chromosomes of D. discoideum. They mainly consist of one type of transposons that is confined to centromeric regions. Centromeres are dynamic due to transposon integration, but an optimal centromere size seems to exist in D. discoideum. One centromere probably has expanded recently, whereas another underwent major rearrangements

    A template for the exploration of chaotic locomotive patterns

    Get PDF
    Inverted pendulum and spring-mass models have been successfully used to explore the dynamics of the lower extremity for animal and human locomotion. These models have been classified as templates that describe the biomechanics of locomotion. A template is a simple model with all the joint complexities, muscles and neurons of the locomotor system removed. Such templates relate well to the observed locomotive patterns and provide reference points for the development of more elaborate dynamical systems. In this investigation, we explored if a passive dynamic double pendulum walking model, that walks down a slightly sloped surface (Ξ³Ξ³ was increased, a cascade of bifurcations were present in the model\u27s locomotive pattern that lead to a chaotic attractor. Positive Lyapunov exponents were present from 0.01839 rad \u3cΞ³Ξ³ confirmed the presence of chaos in the model\u27s locomotive pattern. These results provide evidence that a passive dynamic double pendulum walking model can be used as a template for exploring the biomechanical control parameters responsible for chaos in human locomotion

    Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the production of specific pheromone components and what controls the variation in their relative frequencies in the pheromone blend. We used a transcriptomic approach to characterize the pheromone gland of the Noctuid moth <it>Heliothis virescens</it>, an important agricultural pest, in order to obtain substantial general sequence information and to identify a range of candidate genes involved in the pheromone biosynthetic pathway.</p> <p>Results</p> <p>To facilitate identifying sets of genes involved in a broad range of processes and to capture rare transcripts, we developed our majority of ESTs from a normalized cDNA library of <it>Heliothis virescens </it>pheromone glands (PG). Combining these with a non-normalized library yielded a total of 17,233 ESTs, which assembled into 2,082 contigs and 6,228 singletons. Using BLAST searches of the NR and Swissprot databases we were able to identify a large number of putative unique gene elements (unigenes), which we compared to those derived from previous transcriptomic surveys of the larval stage of <it>Heliothis virescens</it>. The distribution of unigenes among GO Biological Process functional groups shows an overall similarity between PG and larval transcriptomes, but with distinct enrichment of specific pathways in the PG. In addition, we identified a large number of candidate genes in the pheromone biosynthetic pathways.</p> <p>Conclusion</p> <p>These data constitute one of the first large-scale EST-projects for Noctuidae, a much-needed resource for exploring these pest species. Our analysis shows a surprisingly complex transcriptome and we identified a large number of potential pheromone biosynthetic pathway and immune-related genes that can be applied to population and systematic studies of <it>Heliothis virescens </it>and other Noctuidae.</p

    Nonlinear dynamics indicates aging affects variability during gait

    Get PDF
    Objective. To investigate the nature of variability present in time series generated from gait parameters of two different age groups via a nonlinear analysis. Design. Measures of nonlinear dynamics were used to compare kinematic parameters between elderly and young females. Background. Aging may lead to changes in motor variability during walking, which may explain the large incidence of falls in the elderly. Methods. Twenty females, 10 younger (20–37 yr) and 10 older (71–79 yr) walked on a treadmill for 30 consecutive gait cycles. Time series from selected kinematic parameters of the right lower extremity were analyzed using nonlinear dynamics. The largest Lyapunov exponent and the correlation dimension of all time series, and the largest Lyapunov exponent of the original time series surrogated were calculated. Standard deviations and coefficient of variations were also calculated for selected discrete points from each gait cycle. Independent t-tests were used for statistical comparisons. Results. The Lyapunov exponents were found to be significantly different from their surrogate counterparts. This indicates that the fluctuations observed in the time series may reflect deterministic processes by the neuromuscular system. The elderly exhibited significantly larger Lyapunov exponents and correlation dimensions for all parameters evaluated indicating local instability. The linear measures indicated that the elderly demonstrated significantly higher variability. Conclusions. The nonlinear analysis revealed that fluctuations in the time series of certain gait parameters are not random but display a deterministic behavior. This behavior may degrade with physiologic aging resulting in local instability. Relevance Elderly show increased local instability or inability to compensate to the natural stride-to-stride variations present during locomotion. We hypothesized that this may be the one of the reasons for the increases in falling due to aging. Future efforts should attempt to evaluate this hypothesis by making comparisons to pathological subjects (i.e. elderly fallers), and examine the sensitivity and specificity of the nonlinear methods used in this study to aid clinical assessment

    Lack of interferon response in animals to naked siRNAs

    Get PDF
    RNA interference (RNAi) is rapidly becoming the method of choice for the elucidation of gene function and the identification of drug targets. As with other oligonucleotide-based strategies, RNAi is envisioned to ultimately be useful as a human therapeutic. Unlike previous nucleic acid therapeutics, small interfering RNAs have the potential to elicit immune responses via interactions with Toll-like receptor 3 and trigger interferon responses like long, double-stranded RNA and its analogs, such as poly(I:C). Recently, the safety of siRNAs has been questioned because they have been shown to trigger an interferon response in cultured cells. We show here that it is possible to administer naked, synthetic siRNAs to mice and downregulate an endogenous or exogenous target without inducing an interferon response

    Origin of land plants: Do conjugating green algae hold the key?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial.</p> <p>Results</p> <p>Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes.</p> <p>Conclusions</p> <p>Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future.</p

    Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements

    Get PDF
    IT-101, a cyclodextrin polymer-based nanoparticle containing camptothecin, is in clinical development for the treatment of cancer. Multiorgan pharmacokinetics and accumulation in tumor tissue of IT-101 is investigated by using PET. IT-101 is modified through the attachment of a 1,4,7,10-tetraazacyclododecane-1,4,7-Tris-acetic acid ligand to bind ^(64)Cu^(2+). This modification does not affect the particle size and minimally affects the surface charge of the resulting nanoparticles. PET data from ^(64)Cu-labeled IT-101 are used to quantify the in vivo biodistribution in mice bearing Neuro2A s.c. tumors. The ^(64)Cu-labeled IT-101 displays a biphasic plasma elimination. Approximately 8% of the injected dose is rapidly cleared as a low-molecular-weight fraction through the kidneys. The remaining material circulates in plasma with a terminal half-life of 13.3 h. Steadily increasing concentrations, up to 11% injected dose per cm^3, are observed in the tumor over 24 h, higher than any other tissue at that time. A 3-compartment model is used to determine vascular permeability and nanoparticle retention in tumors, and is able to accurately represent the experimental data. The calculated tumor vascular permeability indicates that the majority of nanoparticles stay intact in circulation and do not disassemble into individual polymer strands. A key assumption to modeling the tumor dynamics is that there is a β€œsink” for the nanoparticles within the tumor. Histological measurements using confocal microscopy show that IT-101 localizes within tumor cells and provides the sink in the tumor for the nanoparticles

    Contemporary outcomes of vertebral artery injury

    Get PDF
    ObjectiveVertebral artery injury (VAI) associated with cervical trauma is being increasingly recognized with more aggressive screening. Disparate results from previous literature have led to uncertainty of the significance, natural history, and optimal therapy for VAI.MethodsTo understand the natural history and treatment outcomes from our experience, we performed a retrospective, single-center review from a level I trauma center for the previous 10 years of all VAI. Injuries were identified from search of an administrative trauma database, a resident-run working database, and all radiology dictations for the same period. All VAI were classified according to segmental involvement, Denver grading scale, and laterality. Analysis of associated injuries, demographics, neurologic outcome, mortality, length of stay, treatment plan, and follow-up imaging was also performed.ResultsFifty-one patients with VAI were identified from 2001 to 2011 from a total of 36,942 trauma admissions (0.13% incidence). Associated injuries were significant with an average New Injury Severity Score of 29.6. Penetrating trauma occurred in 14%. Cervical spine fracture was present in 88% with VAI. Diagnosis was obtained with computed tomographic angiography (CTA) in 95%. Screening was prompted by injury pattern or high-risk mechanism in all cases. Injuries classified according to the Denver grading scale were grade IΒ = 24%, grade IIΒ = 35%, grade IIIΒ = 4%, grade IVΒ = 35%, and grade VΒ = 2%. Distribution across segments included V1Β = 18%, V2Β = 67%, V3Β = 31%, and V4Β = 6%. Only one posterior circulation stroke was attributable to VAI. Overall mortality was 8%, with each mortality being associated with significant other organ injuries. Treatment rendered for VAI was antiplatelet therapy (50%), observation (31%), warfarin (17%), and stent (2%). There were no significant differences between treatment groups on any variable with the exception of body mass index (PΒ = .047). Follow-up was obtained for 13% (nΒ = 6) of survivors. The CTA demonstrated injury stability in four patients and resolution in two patients. Accuracy of the administrative trauma database was 53% compared with 96% for the resident-run working database.ConclusionsNeurologic sequelae attributable to VAI were rare. Grade of VAI or vertebral artery segment did not correlate with morbidity. We did not observe any differences in short-term outcomes between systemic anticoagulation and antiplatelet therapy. Of those patients seen at follow-up, injury resolution or stability was documented by CTA. A conservative approach with either observation or antithrombotic therapy is suggested. If the natural history of VAI includes a very low stroke rate, then therapies with a lower therapeutic index, such as systemic anticoagulation, in the severely injured trauma patient are not supported. Our search strategy urges awareness of the limitations of administrative databases for retrospective vascular study

    Functional polarity is introduced by Dicer processing of short substrate RNAs

    Get PDF
    Synthetic RNA duplexes that are substrates for Dicer are potent triggers of RNA interference (RNAi). Blunt 27mer duplexes can be up to 100-fold more potent than traditional 21mer duplexes (1). Not all 27mer duplexes show increased potency. Evaluation of the products of in vitro dicing reactions using electrospray ionization mass spectrometry reveals that a variety of products can be produced by Dicer cleavage. Use of asymmetric duplexes having a single 2-base 3β€²-overhang restricts the heterogeneity that results from dicing. Inclusion of DNA residues at the ends of blunt duplexes also limits heterogeneity. Combination of asymmetric 2-base 3β€²-overhang with 3β€²-DNA residues on the blunt end result in a duplex form which directs dicing to predictably yield a single primary cleavage product. It is therefore possible to design a 27mer duplex which is processed by Dicer to yield a specific, desired 21mer species. Using this strategy, two different 27mers can be designed that result in the same 21mer after dicing, one where the 3β€²-overhang resides on the antisense (AS) strand and dicing proceeds to the β€˜right’ (β€˜R’) and one where the 3β€²-overhang resides on the sense (S) strand and dicing proceeds to the β€˜left’ (β€˜L’). Interestingly, the β€˜R’ version of the asymmetric 27mer is generally more potent in reducing target gene levels than the β€˜L’ version 27mer. Strand targeting experiments show asymmetric strand utilization between the two different 27mer forms, with the β€˜R’ form favoring S strand and the β€˜L’ form favoring AS strand silencing. Thus, Dicer processing confers functional polarity within the RNAi pathway
    • …
    corecore