156 research outputs found

    Postbuckling behavior of graphite-epoxy panels

    Get PDF
    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins

    Design detail verification tests for a lightly loaded open-corrugation graphite-epoxy cylinder

    Get PDF
    Flat corrugated graphite-epoxy panels were tested in compression to verify selected design details of a ring-stiffened cylinder that was designed to support an axial compressive load of 157.6 kN/m without buckling. Three different sizes of subcomponent panels, with the same basic corrugation geometry, were tested: (1) 60.96-cm-long by 45.72-cm-wide panels to evaluate the local buckling strength of the shell wall design; (2) 91.44-cm-long by 45.72-cm-wide panels to evaluate a longitudinal joint and the load-introduction method; and (3) 254.0-cm-long by 91.44-cm-wide panels with four simulated-ring stiffeners to evaluate the ring-attachment method. The test results indicate that the modified shell-wall design, the longitudinal joint, the load-introduction method, and the stiffener-attachment method for the proposed cylinder have adequate strength to support the design load

    The effect of impact damage and circular holes on the compressive strength of a graphite-epoxy laminate

    Get PDF
    Specimens were impacted by 1.27-cm-diameter aluminum spheres with speeds ranging from 52 to 101 m/s. Some specimens were impacted without any applied compressive load and then loaded to failure to determine their residual strength. Other specimens were loaded to a prescribed axial compressive strain and impacted while at that applied load. Loaded specimens that did not fail catastrophically on impact were subsequently loaded to failure to determine their residual strength. Low-velocity impact damage was found to degrade seriously the laminate static compressive strength. Low-strain compression-compression cyclic loading was found to degrade further the compressive strength of impact-damaged specimens. Specimens with circular holes having diameters up to a third of the specimen width were loaded to failure in compression. It was found that circular holes can also degrade the static compressive strength of the laminate. The effects of circular holes and impact damage on the compressive strength of the laminate are compared

    Effect of Low Velocity Impact Damage on the Compressive Strength of Graphite/Epoxy Hat-Stiffened Panels

    Get PDF
    Low velocity impact damage on the compressive strength of graphite/epoxy hat stiffened panels is studied. Fourteen panels, representative of minimum-mass designs for two compression load levels were tested. Eight panels were damaged by impact and the effect on compressive strength was evaluated by comparing the results with data for undamaged panels. The impact tests consisted of firing 1.27 cm diameter aluminum projectiles normal to the plane of the panel at a velocity of approximately 55 m/sec to simulate impact from runway debris. The results of this investigation indicate that impact damage in the panels designed for 0.53 MN/m was contained locally and the damaged panels were capable of carrying the design load. The panels designed for 1.58 MN/m failed between 50 and 58 percent of the design load due to impact damage in the high axial stiffness region. The extent of damage in the high axial stiffness region of both panel designs increased with the magnitude of applied axial load. Damage in this region was the most significant factor in reducing panel strength. Limited damage that was not visually detectable reduced ultimate strength as much as extensive visible damage

    The compressive failure of graphite/epoxy plates with circular holes

    Get PDF
    The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations

    Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    Get PDF
    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research

    Recent development in the design, testing and impact-damage tolerance of stiffened composite panels

    Get PDF
    Structural technology of laminated filamentary-composite stiffened-panel structures under combined inplane and lateral loadings is discussed. Attention is focused on: (1) methods for analyzing the behavior of these structures under load and for determining appropriate structural proportions for weight-efficient configurations; and (2) effects of impact damage and geometric imperfections on structural performance. Recent improvements in buckling analysis involving combined inplane compression and shear loadings and transverse shear deformations are presented. A computer code is described for proportioning or sizing laminate layers and cross-sectional dimensions, and the code is used to develop structural efficiency data for a variety of configurations, loading conditions, and constraint conditions. Experimental data on buckling of panels under inplane compression is presented. Mechanisms of impact damage initiation and propagation are described

    Numerical and experimental investigation of the bending response of thin-walled composite cylinders

    Get PDF
    A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains, and moments are influenced by laminate orthotropy and initial geometric imperfections. Measured buckling results correlate well with predictions for the geometrically imperfect specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-shaped branches that correspond to unique deflection patterns. The observed postbuckling deflection patterns and measured strain profiles show striking similarities to the predictions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear failure mode along the nodal lines of the postbuckling deflection patterns

    Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    Get PDF
    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases

    Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank

    Get PDF
    Results of linear bifurcation and nonlinear analyses of the Space Shuttle superlightweight (SLWT) external liquid-oxygen (LO2) tank for an important early booster ascent loading condition are presented. These results for thin-walled linear elastic shells that are subjected to combined mechanical and thermal loads illustrate an important type of response mode that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the forward ogive section of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of short-wavelength bending deformations in the forward ogive and barrel sections of the LO2 tank that growing amplitude in a stable manner increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the forward ogive section. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shield generally require a large-scale, high-fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 2.6 times the values of the operational loads considered
    • …
    corecore