67 research outputs found

    Breathing adapted radiotherapy: a 4D gating software for lung cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose.</p> <p>Methods and Materials</p> <p>Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT.</p> <p>Results</p> <p>Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case.</p> <p>Conclusions</p> <p>The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.</p

    Holmium Nanoparticles: Preparation and In Vitro Characterization of a New Device for Radioablation of Solid Malignancies

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Purpose The present study introduces the preparation and in vitro characterization of a nanoparticle device comprising holmium acetylacetonate for radioablation of unresectable solid malignancies. Methods HoAcAc nanoparticles were prepared by dissolving holmium acetylacetonate in chloroform, followed by emulsification in an aqueous solution of a surfactant and evaporation of W. Bult: R. Varkevisser: P. R. Luijten: A. D. van het Schip

    Costlets: A Generalized Approach to Cost Functions for Automated Optimization of IMRT Treatment Plans

    Full text link
    We present the creation and use of a generalized cost function methodology based on costlets for automated optimization for conformal and intensity modulated radiotherapy treatment plans. In our approach, cost functions are created by combining clinically relevant “costlets”. Each costlet is created by the user, using an “evaluator” of the plan or dose distribution which is incorporated into a function or “modifier” to create an individual costlet. Dose statistics, dose-volume points, biological model results, non-dosimetric parameters, and any other information can be converted into a costlet. A wide variety of different types of costlets can be used concurrently. Individual costlet changes affect not only the results for that structure, but also all the other structures in the plan (e.g., a change in a normal tissue costlet can have large effects on target volume results as well as the normal tissue). Effective cost functions can be created from combinations of dose-based costlets, dose-volume costlets, biological model costlets, and other parameters. Generalized cost functions based on costlets have been demonstrated, and show potential for allowing input of numerous clinical issues into the optimization process, thereby helping to achieve clinically useful optimized plans. In this paper, we describe and illustrate the use of the costlets in an automated planning system developed and used clinically at the University of Michigan Medical Center. We place particular emphasis on the flexibility of the system, and its ability to discover a variety of plans making various trade-offs between clinical goals of the treatment that may be difficult to meet simultaneously.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47484/1/11081_2005_Article_2066.pd

    Bildführung: Vergangenheit und Zukunft der Strahlentherapie

    Get PDF
    Image guidance has been playing a decisive role throughout the history of radiotherapy, but developments in 3D-and 4D imaging data acquisition using computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have significantly boosted the precision of conformal radiotherapy. An overarching aim of radiotherapy is conforming the treatment dose to the tumor in order to optimally limit a high radiation dose outside the target. Stereotactic, intensity modulated, and adaptive radiotherapy are all largely based on appropriately using imaging information both before and during treatment delivery using on-board imaging devices. While pretreatment imaging for planning has reached a very high level in the past two decades, the next step will be to further refine and accelerate imaging during treatment delivery, resulting in adaptation of the dose fluence during a patient’s treatment in various scenarios, some of which are discussed in this article
    corecore