212 research outputs found

    Specific Heat of the Dilute Ising Magnet LiHox_xY1−x_{1-x}F4_4

    Full text link
    We present specific heat data on three samples of the dilute Ising magnet \HoYLF with x=0.018x = 0.018, 0.045 and 0.080. Previous measurements of the ac susceptibility of an x=0.045x = 0.045 sample showed the Ho3+^{3+} moments to remain dynamic down to very low temperatures and the specific heat was found to have unusually sharp features. In contrast, our measurements do not exhibit these sharp features in the specific heat and instead show a broad feature, for all three samples studied, which is qualitatively consistent with a spin glass state. Integrating C/TC/T, however, reveals an increase in residual entropy with lower Ho concentration, consistent with recent Monte Carlo simulations showing a lack of spin glass transition for low x.Comment: 10 pages, 3 figurs, accepted for publication in Phys. Rev. Let

    Juxtaposition of Spin Freezing and Long Range Order in a Series of Geometrically Frustrated Antiferromagnetic Gadolinium Garnets

    Full text link
    Specific heat measurements in zero magnetic field are presented on a homologous series of geometrically frustrated, antiferromagnetic, Heisenberg garnet systems. Measurements of Gd3Ga5O12, grown with isotopically pure Gd, agree well with previous results on samples with naturally abundant Gd, showing no ordering features. In contrast, samples of Gd3Te2Li3O12 and Gd3Al5O12 are found to exhibit clear ordering transitions at 243 mK and 175 mK respectively. The effects of low level disorder are studied through dilution of Gd3+ with non-magnetic Y3+ in Gd3Te2Li3O12. A thorough structural characterization, using X-ray diffraction, is performed on all of the samples studied. We discuss possible explanations for such diverse behavior in very similar systems.Comment: Accepted for publication in Physical Review

    Gapped and gapless short range ordered magnetic states with (12,12,12)(\frac{1}{2},\frac{1}{2},\frac{1}{2}) wavevectors in the pyrochlore magnet Tb2+x_{2+x}Ti2−x_{2-x}O7+δ_{7+\delta}

    Full text link
    Recent low temperature heat capacity (CP_P) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb2+x_{2+x}Ti2−x_{2-x}O7+δ_{7+\delta} have shown a strong sensitivity to the precise Tb concentration xx, with a large anomaly exhibited for x∼0.005x \sim 0.005 at TC∼0.5T_C \sim 0.5 K and no such anomaly and corresponding phase transition for x≤0x \le 0. We have grown single crystal samples of Tb2+x_{2+x}Ti2−x_{2-x}O7+δ_{7+\delta}, with approximate composition x=−0.001,+0.0042x=-0.001, +0.0042, and +0.0147+0.0147, where the x=0.0042x=0.0042 single crystal exhibits a large CP_P anomaly at TCT_C=0.45 K, but neither the x=−0.001x=-0.001 nor the x=+0.0147x=+0.0147 single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the x=−0.001x=-0.001 and the x=+0.0147x=+0.0147 samples which show strong (12,12,12)\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) quasi-Bragg peaks at low temperatures characteristic of short range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our x=0.0042x = 0.0042 single crystal. These results show that the strong (12,12,12)\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) quasi-Bragg peaks and gapped AFSI state at low temperatures under field cooled conditions are robust features of Tb2_2Ti2_2O7_7, and are not correlated with the presence or absence of the CP_P anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the CP_P anomaly is confined to 0≤x≤0.010 \leq x \leq 0.01 for Tb2+x_{2+x}Ti2−x_{2-x}O7+δ_{7+\delta}, and is not obviously connected with conventional order of magnetic dipole degrees of freedom.Comment: 7 pages, 3 figure

    Dimensional Evolution of Spin Correlations in the Magnetic Pyrochlore Yb2Ti2O7

    Get PDF
    The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265mK. We report neutron scattering measurements of the thermal evolution of the 2D spin correlations in space and time. Short range three dimensional (3D) spin correlations develop below 400 mK, accompanied by a suppression in the quasi-elastic (QE) scattering below ~ 0.2 meV. These show a slowly fluctuating ground state with spins correlated over short distances within a kagome-triangular-kagome (KTK) stack along [111], which evolves to isolated kagome spin-stars at higher temperatures. Furthermore, low-temperature specific heat results indicate a sample dependence to the putative transition temperature that is bounded by 265mK, which we discuss in the context of recent mean field theoretical analysis.Comment: 5 pages, 6 figure

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Local Defect in Metallic Quantum Critical Systems

    Full text link
    We present a theory of a single point, line or plane defect coupling to the square of the order parameter in a metallic system near a quantum critical point at or above its upper critical dimension. At criticality, a spin droplet is nucleated around the defect with droplet core size determined by the strength of the defect potential. Outside the core a universal slowly decaying tail of the droplet is found, leading to many dissipative channels coupling to the droplet and to a complete suppression of quantum tunneling. We propose an NMR experiment to measure the impurity-induced changes in the local spin susceptibility.Comment: 2 figures; 5 page
    • …
    corecore