50 research outputs found

    Nanotube field of C60 molecules in carbon nanotubes: atomistic versus continuous tube approach

    Full text link
    We calculate the van der Waals energy of a C60 molecule when it is encapsulated in a single-walled carbon nanotube with discrete atomistic structure. orientational degrees of freedom and longitudinal displacements of the molecule are taken into account, and several achiral and chiral carbon nanotubes are considered. A comparison with earlier work where the tube was approximated by a continuous cylindrical distribution of carbon atoms is made. We find that such an approximation is valid for high and intermediate tube radii; for low tube radii, minor chirality effects come into play. Three molecular orientational regimes are found when varying the nanotube radius.Comment: 14 pages, 9 figures, accepted for publication in Phys. Rev.

    How Sandcastles Fall

    Full text link
    Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpiles with such forces, and find that the critical angle is unchanged in the limit of an infinitely large system; however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sandpile rather than at the surface. This is related to a standard result in soil mechanics. The increase in the critical angle is determined by the surface roughness of the particles, and exhibits three regimes as a function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimental results of Hornbaker et al., although not with the interpretation they make of these results.Comment: 4 pages, 2 figures, revte

    Inelastic collapse of a randomly forced particle

    Full text link
    We consider a randomly forced particle moving in a finite region, which rebounds inelastically with coefficient of restitution r on collision with the boundaries. We show that there is a transition at a critical value of r, r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath which the particle undergoes inelastic collapse, coming to rest after an infinite number of collisions in a finite time. The value of r_c is argued to be independent of the size of the region or the presence of a viscous damping term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st

    Avalanche Dynamics in Wet Granular Materials

    Full text link
    We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see http://angel.elte.hu/~tegzes/condmat.htm

    On the diffraction pattern of C60 peapods

    Full text link
    We present detailed calculations of the diffraction pattern of a powder of bundles of C60_{60} peapods. The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed, which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different technics, which present different structural parameters. We propose and test different criteria to solve the difficult problem of the filling rate determination.Comment: Sumitted 19 May 200

    Aging in humid granular media

    Full text link
    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper.Comment: 7 pages, 9 figure

    Nanoelectromechanical coupling in fullerene peapods probed via resonant electrical transport experiments

    Full text link
    Fullerene peapods, that is carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications. Here, we investigate the effect of C60 fullerenes on electron transport via peapod quantum dots. Compared to empty nanotubes, we find an abnormal temperature dependence of Coulomb blockade oscillations, indicating the presence of a nanoelectromechanical coupling between electronic states of the nanotube and mechanical vibrations of the fullerenes. This provides a method to detect the C60 presence and to probe the interplay between electrical and mechanical excitations in peapods, which thus emerge as a new class of nanoelectromechanical systems.Comment: 7 pages, 3 figures. Published in Nature Communications. Free online access to the published version until Sept 30th, 2010, see http://www.nature.com/ncomms/journal/v1/n4/abs/ncomms1034.htm

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    Structural and Electronic Decoupling of C_(60) from Epitaxial Graphene on SiC

    Get PDF
    We have investigated the initial stages of growth and the electronic structure of C_(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C_(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C_(60) superlattice. We measure a highest occupied molecular orbital–lowest unoccupied molecular orbital gap of ~ 3.5 eV for the C_(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C_(60) and substrate-induced screening as compared to C_(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates

    Wet Granular Materials

    Full text link
    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g., the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics; tex-style change
    corecore