35,993 research outputs found
Optical and electrical activity of defects in rare earth implanted Si
A common technique for introducing rare earth atoms into Si and related materials for photonic applications is ion implantation. It is compatible with standard Si processing, and also allows high, non-equilibrium concentrations of rare earths to be introduced. However, the high energies often employed mean that there are collision cascades and potentially severe end-of-range damage. This paper reports on studies of this damage, and the competition it may present to the optical activity of the rare earths. Er-, Si, and Yb-implanted Si samples have been investigated, before and after anneals designed to restore the sample crystallinity. The electrical activity of
defects in as-implanted Er, Si, and Yb doped Si has been studied by Deep Level Transient Spectroscopy (DTLS) and the related, high resolution technique, Laplace DLTS (LDLTS), as a function of annealing. Er-implanted Si, regrown by solid phase epitaxy at 600degrees C and then subject to a rapid thermal anneal, has also been studied by time-resolved photoluminescence (PL). The LDLTS studies reveal that there are clear differences in the defect population as a function of depth from the surface, and this is attributed to different defects in the vacancy-rich and interstitial-rich regions. Defects in the interstitial-rich region have electrical characteristics typical of small extended defects, and these may provide the precursors for larger structural defects in annealed layers. The time-resolved PL of the annealed layers, in combination with electron microscopy, shows that the Er emission at 1.54microns contains a fast component attributed to non-radiative recombination at deep states due to small dislocations. It is concluded that there can be measurable competition to the radiative efficiency in rare-earth implanted Si that is due to the implantation and is not specific to Er.</p
Device measures fluid drag on test vehicles
Electromechanical drag balance device measures the aerodynamic drag force acting on a vehicle as it moves through the atmosphere and telemeters the data to a remote receiving station. This device is also used for testing the hydrodynamic drag characteristics of underwater vehicles
Sedimentary organic molecules: Origins and information content
To progress in the study of organic geochemistry, we must dissect the processes controlling the composition of sedimentary organic matter. Structurally, this has proven difficult. Individual biomarkers can often be recognized, but their contribution to total organic materials is small, and their presence does not imply that their biochemical cell mates have survived. We are finding, however, that a combination of structural and isotopic lines of evidence provides new information. A starting point is provided by the isotopic compositions of primary products (degradation products of chlorophylls, alkenones derived from coccoliths). We find strong evidence that the isotopic difference between primary carbonate and algal organic material can be interpreted in terms of the concentration of dissolved CO2. Moreover, the isotopic difference between primary and total organic carbon can be interpreted in terms of characteristic isotopic shifts imposed by secondary processes (responsive, for example, to O2 levels in the depositional environment. In favorable cases, isotopic compositions of a variety of secondary products can be interpreted in terms of flows of carbon, and, therefore, in terms of specific processes and environmental conditions within the depositional environment
Investigation of the relation between solar variations and weather on earth as shown by study of simultaneous data from the sun, Mariner II, near-earth satellites and the atmosphere below the mesosphere
Relation of solar variations and wind to weather on earth shown by data from sun, Mariner II, ATMOSPHERE, and near-earth satellite
Thin Films of 3He -- Implications on the Identification of 3 He -A
Recently the identification of 3He-A with the axial state has been
questioned. It is suggested that the A-phase can actually be in the axiplanar
state. We point out in the present paper that experiments in a film geometry
may be useful to distinguish the above two possibilities. In particular a
second order phase transition between an axial and an axiplanar state would
occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low
Temperature Physic
Magnetization of La(2-x)Sr(x)NiO(4+ delta) (0 < x < 0.5) and observation of novel memory effects
We have studied the magnetization of a series of spin-charge ordered
La(2-x)Sr(x)NiO(4+delta) single crystals with 0 < x < 0.5. For fields applied
parallel to the ab plane there is a large irreversibility below a temperature
T(F1) ~ 50 K and a smaller irreversibility that persists up to near the charge
ordering temperature. We observed a novel memory effect in the thermo-remnant
magnetization across the entire doping range. We found that these materials
retain a memory of the temperature at which an external field was removed, and
that there is a pronounced increase in the thermo-remnant magnetization when
the system is warmed through a spin reorientation transition.Comment: 11 pages, 12 figure
First-principles investigation of magnetism and electronic structures of substitutional transition-metal impurities in bcc Fe
The magnetic and electronic structures of impurity atoms from Sc to Zn
in ferromagnetic body-centered cubic iron are investigated using the
all-electron full-potential linearized augmented plane-wave method based on the
generalized gradient approximation (GGA). We found that in general, the GGA
results are closer to the experimental values than those of the local spin
density approximation. The calculated formation enthalpy data indicate the
importance of a systematic study on the ternary Fe-C- systems rather than
the binary Fe- systems, in steel design. The lattice parameters are
optimized and the conditions for spin polarization at the impurity sites are
discussed in terms of the local Stoner model. Our calculations, which are
consistent with previous work, imply that the local spin-polarizations at Sc,
Ti, V, Cu, and Zn are induced by the host Fe atoms. The early transition-metal
atoms couple antiferromagnetically, while the late transition-metal atoms
couple ferromagnetically, to the host Fe atoms. The calculated total
magnetization () of bcc Fe is reduced by impurity elements from Sc to Cr as
a result of the antiferromagnetic interaction, with the opposite effect for
solutes which couple ferromagnetically. The changes in are attributed to
nearest neighbor interactions, mostly between the impurity and host atoms. The
atom averaged magnetic moment is shown to follow generally the well-known
Slater-Pauling curve, but our results do not follow the linearity of the
Slater-Pauling curve. We attribute this discrepancy to the weak ferromagnetic
nature of bcc Fe. The calculated Fermi contact hyperfine fields follow the
trend of the local magnetic moments. The effect of spin-orbit coupling is found
not to be significant although it comes into prominence at locations far from
the impurity sites.Comment: 26 pages, 11 figure
- …