2,104 research outputs found

    Odd parity charge density-wave scattering in cuprates

    Full text link
    We investigate a model where superconducting electrons are coupled to a frequency dependent charge-density wave (CDW) order parameter Delta(w). Our approach can reconcile the simultaneous existence of low energy Bogoljubov quasiparticles and high energy electronic order as observed in scanning tunneling microscopy (STM) experiments. The theory accounts for the contrast reversal in the STM spectra between positive and negative bias observed above the pairing gap. An intrinsic relation between scattering rate and inhomogeneities follows naturally.Comment: 5 pages, 3 figure

    Interplay between density and superconducting quantum critical fluctuations

    Full text link
    We consider the case of a density-driven metal-superconductor transition in the proximity of an electronic phase separation. In particular we investigate the interplay between superconducting fluctuations and density fluctuations, which become quantum critical when the electronic phase separation vanishes at zero temperature into a quantum critical point. In this situation the critical dynamical density fluctuations strongly affect the dynamics of the Cooper pair fluctuations, which acquire a more singular character with a z=3 dynamical critical index. This gives rise to a scenario that possibly rules the disappearance of superconductivity when the electron density is reduced by elecrostatic gating at the LaAlO3/SrTiO3 interface.Comment: 5 pages, 4 figure

    Checkerboard and stripe inhomogeneities in cuprates

    Full text link
    We systematically investigate charge-ordering phases by means of a restricted and unrestricted Gutzwiller approximation to the single-band Hubbard model with nearest (tt) and next-nearest neighbor hopping (t′t'). When ∣t′/t∣|t'/t| is small, as appropriate for La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}, stripes are found, whereas in compounds with larger ∣t′/t∣|t'/t| (such as Ca2−xNaxCuO2Cl2{\rm Ca_{2-x}Na_x CuO_2Cl_2} and Bi2Sr2CaCu2O8+δ{\rm Bi_2Sr_2CaCu_2O_{8+\delta}}) checkerboard structures are favored. In contrast to the linear doping dependence found for stripes the charge periodicity of checkerboard textures is locked to 4 unit cells over a wide doping range. In addition we find that checkerboard structures are favored at surfaces.Comment: 5 pages, 3 figure

    Charge inhomogeneity coexisting with large Fermi surfaces

    Full text link
    We discuss how stripes in cuprates can be compatible with a Fermi-liquid-like Fermi surface and, at the same time, they give rise to a one-dimensional-like pseudo Fermi surface in the momentum distribution function.Comment: Proceedings of the M2S conference, July 2006, Dresden; 2 pages, 1 figure to appear on Phisica

    Fermi surface dichotomy on systems with fluctuating order

    Full text link
    We investigate the effect of a dynamical collective mode coupled with quasiparticles at specific wavevectors only. This coupling describes the incipient tendency to order and produces shadow spectral features at high energies, while leaving essentially untouched the low energy quasiparticles. This allows to interpret seemingly contradictory experiments on underdoped cuprates, where many converging evidences indicate the presence of charge (stripe or checkerboard) order, which remains instead elusive in the Fermi surface obtained from angle-resolved photoemission experiments.Comment: 11 pages, 10 figure

    The Electron-Phonon Interaction in the Presence of Strong Correlations

    Full text link
    We investigate the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view: the strong interaction is responsible for vertex corrections, which are strongly dependent on the vFq/ωv_Fq/\omega ratio. These corrections generically lead to a strong suppression of the effective coupling between quasiparticles mediated by a single phonon exchange in the vFq/ω≫1v_Fq/\omega \gg 1 limit. However, such effect is not present when vFq/ω≪1v_Fq/\omega \ll 1. Analyzing the Landau stability criterion, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. A detailed analysis is then carried out using a slave-boson approach for the infinite-U three-band Hubbard model. In the presence of a coupling between the local hole density and a dispersionless optical phonon, we explicitly confirm the strong dependence of the hole-phonon coupling on the transferred momentum versus frequency ratio. We also find that the exchange of phonons leads to an unstable phase with negative compressibility already at small values of the bare hole-phonon coupling. Close to the unstable region, we detect Cooper instabilities both in s- and d-wave channels supporting a possible connection between phase separation and superconductivity in strongly correlated systems.Comment: LateX 3.14, 04.11.1994 Preprint no.101

    Phase separation from electron confinement at oxide interfaces

    Full text link
    Oxide heterostructures are of great interest both for fundamental and applicative reasons. In particular the two-dimensional electron gas at the LaAlO3_3/SrTiO3_3 or LaTiO3_3/SrTiO3_3 interfaces displays many different physical properties and functionalities. However there are clear indications that the interface electronic state is strongly inhomogeneous and therefore it is crucially relevant to investigate possible intrinsic electronic mechanisms underlying this inhomogeneity. Here the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that the electron confinement at the interface may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a generic robust and intrinsic mechanism for the experimentally observed inhomogeneous character of these interfaces.Comment: 8 pages and 4 figure

    Kinks and waterfalls as signatures of competing order in angle-resolved photoemission spectra of La_{2-x}Sr_xCuO_4

    Full text link
    We show that the so-called kinks and waterfalls observed in angle-resolved photoemission spectra of La2-xSrxCuO4, a prototypical high-Tc superconducting cuprate, result from the coupling of quasiparticles with two distinct nearly critical collective modes with finite characteristic wave vectors, typical of charge and spin fluctuations near a stripe instability. Both phonon-like charge and spin collective modes are needed to account for the kinked quasiparticle dispersions. This clarifies the long-standing question whether kinks are due to phonons or spin waves and the nature of the bosonic mediators of the electron-electron effective interaction in La2-xSrxCuO4.Comment: 5 pages, 4 figure
    • …
    corecore