353 research outputs found

    God in the Season of Bees

    Get PDF
    Pages 34-3

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    Origin of trap assisted tunnelling in ammonia annealed SiC trench MOSFETs

    Get PDF
    The interface between silicon carbide (SiC) and silicon dioxide (SiO2) is of considerable importance for the performance and reliability of 4H-SiC (trench) metal oxide semiconductor field effect transistors (MOSFETs) and various different post oxidation anneals (POAs) have been used to optimize its quality. Whereas nitric oxide (NO) POA leads to very reliable and well performing MOSFETs, ammonia (NH3) can further improve the device performance, however, at the cost of the gate oxide (GOX) reliability, e.g. leading to trap assisted tunneling (TAT). We investigate the origin of TAT and GOX leakage in differently annealed gate oxides experimentally, using 4H-SiC trench MOSFETs, and theoretically, using Density Functional Theory (DFT) simulations. Our findings reinforce the view that the NO anneal for SiC devices results in the best overall quality as devices annealed in NH3 and nitrogen N2 show higher oxide charge density and leakage currents. DFT simulations demonstrate that, contrary to what has often been assumed so far, NH3 annealing leads to the formation of additional hydrogen related defects, which open leakage paths in the oxide otherwise not present in NO treated oxides

    A numerical study of partial-SOI LDMOSFETs

    Get PDF
    Abstract The high-voltage and self-heating behavior of partial-SOI (silicon-on-insulator) LDMOSFETs were studied numerically. Different locations of the silicon window were considered to investigate the electrical and thermal effects. It is found that the potential distribution of the partial-SOI LDMOSFET with the silicon window under the drain is similar to that of standard junction isolation devices. With the silicon window under the source the potential distribution is similar to that of the conventional SOI LDMOSFET. Using the two-dimensional numerical simulator MINIMOS-NT, we confirm that the breakdown voltage of partial-SOI LDMOSFETs with a silicon window under the source is higher than that of partial-SOI LDMOSFET with a silicon window under the drain

    Structural insights into the mechanism of negative regulation of single-box high mobility group proteins by the acidic tail domain.

    Get PDF
    The Drosophila and plant (maize) functional counterparts of the abundant vertebrate chromosomal protein HMGB1 (HMG-D and ZmHMGB1, respectively) differ from HMGB1 in having a single HMG box, as well as basic and acidic flanking regions that vary greatly in length and charge. We show that despite these variations, HMG-D and ZmHMGB1 exist in dynamic assemblies in which the basic HMG boxes and linkers associate with their intrinsically disordered, predominantly acidic, tails in a manner analogous to that observed previously for HMGB1. The DNA-binding surfaces of the boxes and linkers are occluded in "auto-inhibited" forms of the protein, which are in equilibrium with transient, more open structures that are "binding-competent." This strongly suggests that the mechanism of auto-inhibition may be a general one. HMG-D and ZmHMGB1 differ from HMGB1 in having phosphorylation sites in their tail and linker regions. In both cases, in vitro phosphorylation of serine residues within the acidic tail stabilizes the assembled form, suggesting another level of regulation for interaction with DNA, chromatin, and other proteins that is not possible for the uniformly acidic (hence unphosphorylatable) tail of HMGB1.This work was supported by the Biotechnology and Biological Sciences Research Council through the award of Grant BB/D002257/1 (to J. O. T.) and a grant from the Deutsche Forschungsgemeinschaft (DFG) (to K. D. G.).This is the final published version. It first appeared at http://www.jbc.org/content/289/43/29817.long

    Chiral Quark Model with Configuration Mixing

    Full text link
    The implications of one gluon exchange generated configuration mixing in the Chiral Quark Model (χ\chiQMgcm_{gcm}) with SU(3) and axial U(1) symmetry breakings are discussed in the context of proton flavor and spin structure as well as the hyperon β\beta-decay parameters. We find that χ\chiQMgcm_{gcm} with SU(3) symmetry breaking is able to give a satisfactory unified fit for spin and quark distribution functions, with the symmetry breaking parameters α=.4\alpha=.4, β=.7\beta=.7 and the mixing angle ϕ=20o\phi=20^o, both for NMC and the most recent E866 data. In particular, the agreement with data, in the case of GA/GV,Δ8G_A/G_V, \Delta_8, F, D, fsf_s and f3/f8f_3/f_8, is quite striking.Comment: 16 pages, LaTex, Table and Appendix adde
    corecore