12,854 research outputs found

    Energy-level pinning and the 0.7 spin state in one dimension: GaAs quantum wires studied using finite-bias spectroscopy

    Full text link
    We study the effects of electron-electron interactions on the energy levels of GaAs quantum wires (QWs) using finite-bias spectroscopy. We probe the energy spectrum at zero magnetic field, and at crossings of opposite-spin-levels in high in-plane magnetic field B. Our results constitute direct evidence that spin-up (higher energy) levels pin to the chemical potential as they populate. We also show that spin-up and spin-down levels abruptly rearrange at the crossing in a manner resembling the magnetic phase transitions predicted to occur at crossings of Landau levels. This rearranging and pinning of subbands provides a phenomenological explanation for the 0.7 structure, a one-dimensional (1D) nanomagnetic state, and its high-B variants.Comment: 6 pages, 4 figure

    Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth.

    No full text
    Some insects use leading-edge vortices to generate high lift forces, as has been inferred from qualitative smoke visualisations of the flow around their wings. Here we present the first Digital Particle Image Velocimetry (DPIV) data and quantitative analysis of an insect’s leading-edge vortex and near wake at two flight speeds. This allows us to describe objectively 2D slices through the flow field of a tethered Tobacco Hawkmoth (Manduca sexta). The near-field vortex wake appears to braodly resemble elliptical vortex loops. The presence of a leading-edge vortex towards the end of the downstroke is found to coincide with peak upward force production measured by a six-component force–moment balance. The topology of Manduca’s leading-edge vortex differs from that previously described because late in the downstroke, the structure extends continuously from wingtip across the thorax to the other wingtip

    Epeoloides pilosulus (Cresson) Rediscovered in Michigan, with Notes on the Distribution and Status of its Macropis hosts.

    Get PDF
    Epeoloides pilosulus (Cresson 1878) is one of the rarest bees in North America with only a handful of records since 1960. The last collection in Michigan was made in 1944. Epeoloides pilosulus is a brood parasite of Macropis bees, which until recently had not been collected in Michigan for several decades. Bee surveys in Midland County, Michigan have led to the rediscovery of E. pilosulus in this state – the first record in 74 years. Michigan becomes the fourth state where E. pilosulus has been rediscovered after Connecticut in 2006, New York in 2014 and Maine in 2016, and the sixth region in North America after Nova Scotia in 2002 and Alberta in 2010. State-wide bee surveys have also shown that the principal host, Macropis nuda (Provancher 1882), remains widespread in Michigan, and that Macropis patellata Patton 1880 is newly recorded for the state

    Mortality from head injury over four decades in Scotland

    Get PDF
    Although the causes of head injury, the population at risk and approaches to prevention and treatment are continually evolving, there is little information about how these are reflected in patterns of mortality over time. We used population based comprehensive data uniquely available in Scotland to investigate changes in the total numbers of deaths from 1974 to 2012, as well as the rates of head injury death, from different causes, overall and in relation to age and gender. Total mortality fell from an annual average of 503 to 339 with a corresponding annual decrease in rate from 9.6 to 6.4 per 100,000 population, the decline substantially occurring between 1974 and 1990. Deaths in children fell strikingly but rose in older people. Deaths in males fell to a greater extent than females but remained at a higher rate overall. Initially, a transport accident accounted for most deaths but these fell by 80%, from 325 per year to 65 per year over the 39 year period. Deaths from falling and all other causes did not decline, coming to outnumber transport accident deaths by 1998, which accounts for the overall absence of change in total mortality in recent years. In order to reduce mortality in the future, more effective measures to prevent falls are needed and these strategies will vary in younger adults (where alcohol is often a factor), and in older adults where infirmity can be a cause. In addition, measures to sustain reductions in transport accidents need to be maintained and further developed

    Shock wave compression of iron-silicate garnet

    Get PDF
    Shock wave Hugoniot data have been obtained for almandine-garnet of composition (Fe_(0.79), Mg_(0.14), Ca_(0.04), Mn_(0.03)) Al_2Si_3O_(12) to pressures of >650 kb. The Hugoniot data indicate the onset of a high-pressure phase at 195 ± 20 kb. Equation-of-state systematics and crystal chemical data (stemming largely from analog compounds) suggest that the high-pressure phase occurs in an ‘ilmenitelike’ structure with an initial density of 4.44 ± 0.04 g/cm^3. This value represents an increase of about 6% over the initial garnet density of 4.180 ± 0.005 g/cm^3. The adiabatic bulk modulus K_0^s and its first pressure derivative (∂K^s/∂P)_T were calculated for the high-pressure phase and found to be 3.19 ± 0.39 Mb and 2.6 ± 0.7, respectively. The major source of probable error in these values results from the indicated uncertainty in the initial density of the high-pressure phase. These results strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle

    Autonomic physiological data associated with simulator discomfort

    Get PDF
    The development of a physiological monitoring capability for the Army's advanced helicopter simulator facility is reported. Additionally, preliminary physiological data is presented. Our objective was to demonstrate the sensitivity of physiological measures in this simulator to self-reported simulator sickness. The data suggested that heart period, hypergastria, and skin conductance level were more sensitive to simulator sickness than were vagal tone and normal electrogastric activity

    Effects of accidental microconstriction on the quantized conductance in long wires

    Full text link
    We have investigated the conductance of long quantum wires formed in GaAs/AlGaAs heterostructures. Using realistic fluctuation potentials from donor layers we have simulated numerically the conductance of four different kinds of wires. While ideal wires show perfect quantization, potential fluctuations from random donors may give rise to strong conductance oscillations and degradation of the quantization plateaux. Statistically there is always the possibility of having large fluctuations in a sample that may effectively act as a microconstriction. We therefore introduce microconstrictions in the wires by occasional clustering of donors. These microconstrictions are found to restore the quantized plateaux. A similar effect is found for accidental lithographic inaccuracies.Comment: 4 pages, 2 figures, paper for NANO2002 symposium, will appear in SPIE proceeding
    • …
    corecore