577 research outputs found

    Nonequilibrium Precursor Model for the Onset of Percolation in a Two-Phase System

    Get PDF
    Using a Boltzmann equation, we investigate the nonequilibrium dynamics of nonperturbative fluctuations within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite phase as the temperature is increased. We compute the critical value of the order parameter for the onset of percolation, which signals the breakdown of the conventional dilute gas approximation.Comment: 4 pages, 4 eps figures (uses epsf), Revtex. Replaced with version in press Physical Review

    Gravitational instability of the inner static region of a Reissner-Nordstrom black hole

    Full text link
    Reissner--Nordstr\"om black holes have two static regions: r > \ro and 0 < r < \ri, where \ri and \ro are the inner and outer horizon radii. The stability of the exterior static region has been established long time ago. In this work we prove that the interior static region is unstable under linear gravitational perturbations, by showing that field perturbations compactly supported within this region will generically excite a mode that grows exponentially in time. This result gives an alternative reason to mass inflation to consider the space time extension beyond the Cauchy horizon as physically irrelevant, and thus provides support to the strong cosmic censorship conjecture, which is also backed by recent evidence of a linear gravitational instability in the interior region of Kerr black holes found by the authors. The use of intertwiners to solve for the evolution of initial data plays a key role, and adapts without change to the case of super-extremal \rn black holes, allowing to complete the proof of the linear instability of this naked singularity. A particular intertwiner is found such that the intertwined Zerilli field has a geometrical meaning -it is the first order variation of a particular Riemann tensor invariant-. Using this, calculations can be carried out explicitely for every harmonic number.Comment: 24 pages, 4 figures. Changes and corrections in proof using intertwiners, also in figure

    Astrophysical limits on quantum gravity motivated birefringence

    Get PDF
    We obtain observational upper bounds on a class of quantum gravity related birefringence effects, by analyzing the presence of linear polarization in the optical and ultraviolet spectrum of some distant sources. In the notation of Gambini and Pullin we find χ<10−3\chi < 10^{-3}.Comment: 4 pages, submitted to Phys. Rev. Let

    The collision of boosted black holes: second order close limit calculations

    Get PDF
    We study the head-on collision of black holes starting from unsymmetrized, Brill--Lindquist type data for black holes with non-vanishing initial linear momentum. Evolution of the initial data is carried out with the ``close limit approximation,'' in which small initial separation and momentum are assumed, and second-order perturbation theory is used. We find agreement that is remarkably good, and that in some ways improves with increasing momentum. This work extends a previous study in which second order perturbation calculations were used for momentarily stationary initial data, and another study in which linearized perturbation theory was used for initially moving holes. In addition to supplying answers about the collisions, the present work has revealed several subtle points about the use of higher order perturbation theory, points that did not arise in the previous studies. These points include issues of normalization, and of comparison with numerical simulations, and will be important to subsequent applications of approximation methods for collisions.Comment: 20 pages, RevTeX, 6 figures included with psfi
    • 

    corecore