586 research outputs found
Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement
Astrophysical relativistic flow problems require high resolution
three-dimensional numerical simulations. In this paper, we describe a new
parallel three-dimensional code for simulations of special relativistic
hydrodynamics (SRHD) using both spatially and temporally structured adaptive
mesh refinement (AMR). We used the method of lines to discretize the SRHD
equations spatially and a total variation diminishing (TVD) Runge-Kutta scheme
for time integration. For spatial reconstruction, we have implemented piecewise
linear method (PLM), piecewise parabolic method (PPM), third order convex
essentially non-oscillatory (CENO) and third and fifth order weighted
essentially non-oscillatory (WENO) schemes. Flux is computed using either
direct flux reconstruction or approximate Riemann solvers including HLL,
modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR
part of the code is built on top of the cosmological Eulerian AMR code {\sl
enzo}. We discuss the coupling of the AMR framework with the relativistic
solvers. Via various test problems, we emphasize the importance of resolution
studies in relativistic flow simulations because extremely high resolution is
required especially when shear flows are present in the problem. We also
present the results of two 3d simulations of astrophysical jets: AGN jets and
GRB jets. Resolution study of those two cases further highlights the need of
high resolutions to calculate accurately relativistic flow problems.Comment: 14 pages, 23 figures. A section on 3D GRB jet simulation added.
Accepted by ApJ
A Call for the Structured Physicist Report
Introduction:
The field of diagnostic radiology continues to struggle with the clinical adoption of the structured interpretive report, with many radiologists preferring a semistructured, free-text dictation style to a more rigid, highly structured approach that some professional leaders have promoted [1]. Although structured reporting compliance in the radiologist community has been difficult to achieve, diagnostic radiologists have been thinking about and discussing this important issue for many years; it is also a part of the ACRâs Imaging 3.0_ campaign [2]. In the breast imaging community, the well-established BI-RADS_ recommendations produce a very structured report, with a discussion of interpretive findings culminating in a numeric BI-RADS score ranging from 0 to 6 [3]. Unlike some interpretive radiology reports, which can be ambiguous in terms of the next course of action, the BI-RADS scale is not only a diagnostic scale but also prescriptive of what the necessary follow-up should be
SPH Simulations of Counterrotating Disk Formation in Spiral Galaxies
We present the results of Smoothed Particle Hydrodynamics (SPH) simulations
of the formation of a massive counterrotating disk in a spiral galaxy. The
current study revisits and extends (with SPH) previous work carried out with
sticky particle gas dynamics, in which adiabatic gas infall and a retrograde
gas-rich dwarf merger were tested as the two most likely processes for
producing such a counterrotating disk. We report on experiments with a cold
primary similar to our Galaxy, as well as a hot, compact primary modeled after
NGC 4138. We have also conducted numerical experiments with varying amounts of
prograde gas in the primary disk, and an alternative infall model (a spherical
shell with retrograde angular momentum). The structure of the resulting
counterrotating disks is dramatically different with SPH. The disks we produce
are considerably thinner than the primary disks and those produced with sticky
particles. The time-scales for counterrotating disk formation are shorter with
SPH because the gas loses kinetic energy and angular momentum more rapidly.
Spiral structure is evident in most of the disks, but an exponential radial
profile is not a natural byproduct of these processes. The infalling gas shells
that we tested produce counterrotating bulges and rings rather than disks. The
presence of a considerable amount of preexisting prograde gas in the primary
causes, at least in the absence of star formation, a rapid inflow of gas to the
center and a subsequent hole in the counterrotating disk. In general, our SPH
experiments yield stronger evidence to suggest that the accretion of massive
counterrotating disks drives the evolution of the host galaxies towards earlier
(S0/Sa) Hubble types.Comment: To appear in ApJ. 20 pages LaTex 2-column with 3 tables, 23 figures
(GIF) available at this site. Complete gzipped postscript preprint with
embedded figures available from http://tarkus.pha.jhu.edu/~thakar/cr3.html (3
Mb
On the rate of convergence of the Hamiltonian particle-mesh method
The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for compressible fluid flow with Hamiltonian structure. We present a numer- ical short-time study of the rate of convergence of HPM in terms of its three main governing parameters. We find that the rate of convergence is much better than the best available theoretical estimates. Our results indicate that HPM performs best when the number of particles is on the order of the number of grid cells, the HPM global smoothing kernel has fast decay in Fourier space, and the HPM local interpolation kernel is a cubic spline
Tidal exposure or microhabitats: what determines sandy-beach nematode zonation? A case study of a macrotidal ridge-and-runnel sandy beach in Belgium
Lately, across-shore zonation has been found to be more important in structuring the nematode community of a tropical macrotidal sandy beach than microhabitat heterogeneity. To evaluate whether this zonation pattern applies to a temperate beach, a macrotidal ridge-and-runnels sandy beach in the North Sea was studied. We investigated whether a similar zonation occurs in sandbar and runnel microhabitats, and whether the runnels harbour a different community from the subtidal. Our results indicate that nematode communities from runnel and sandbar habitats are significantly different. In addition, horizontal zonation patterns for nematode communities differ between both habitats. Nematode assemblages from sandbars are divided to lower, middle and upper beach while upper and middle runnels cluster together. The subtidal and upper runnels showed dissimilar nematode assemblages, although runnels showed the same dominant species (Daptonema normandicum), which increases its abundance towards the upper runnels. This study illustrates the importance of microhabitat heterogeneity, which resulted in different zonation patterns across the sandy beach examined. The divergent zonation between sandbars and runnels in the macrotidal temperate sandy beach, compared with the pattern observed for a subtropical sandy beach with similar morphodynamics, indicates that generalizations about nematode distribution patterns should be made with caution
Tidal spin-up of stars in dense stellar cusps around massive black holes
We show that main-sequence stars in dense stellar cusps around massive black
holes are likely to rotate at a significant fraction of the centrifugal breakup
velocity due to spin-up by hyperbolic tidal encounters. We use realistic
stellar structure models to calculate analytically the tidal spin-up in soft
encounters, and extrapolate these results to close and penetrating collisions
using smoothed particle hydrodynamics simulations. We find that the spin-up
falls off only slowly with distance from the black hole because the increased
tidal coupling in slower collisions at larger distances compensates for the
decrease in the stellar density. We apply our results to the stars near the
massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main
sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on
average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60
times higher than is usual for such stars and may affect their subsequent
evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one
space dimension. Points representing the solution are moved according to their
characteristic velocities. Particle interaction is resolved by purely local
particle management. Since no global remeshing is required, shocks stay sharp
and propagate at the correct speed, while rarefaction waves are created where
appropriate. The method is TVD, entropy decreasing, exactly conservative, and
has no numerical dissipation. Difficulties involving transonic points do not
occur, however inflection points of the flux function pose a slight challenge,
which can be overcome by a special treatment. Away from shocks the method is
second order accurate, while shocks are resolved with first order accuracy. A
postprocessing step can recover the second order accuracy. The method is
compared to CLAWPACK in test cases and is found to yield an increase in
accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth
International Workshop Meshfree Methods for Partial Differential Equation
Quasars: What turns them off?
(Abridged) We explore the idea that the anti-hierarchical turn-off observed
in the quasar population arises from self-regulating feedback, via an outflow
mechanism. Using a detailed hydrodynamic simulation we calculate the luminosity
function of quasars down to a redshift of z=1 in a large, cosmologically
representative volume. Outflows are included explicitly by tracking halo
mergers and driving shocks into the surrounding intergalactic medium. Our
results are in excellent agreement with measurements of the spatial
distribution of quasars, and we detect an intriguing excess of galaxy-quasar
pairs at very short separations. We also reproduce the anti-hierarchical
turnoff in the quasar luminosity function, however, the magnitude of the
turn-off falls short of that observed as well as that predicted by analogous
semi-analytic models. The difference can be traced to the treatment of gas
heating within galaxies. The simulated galaxy cluster L_X-T relationship is
close to that observed for z~1 clusters, but the simulated galaxy groups at z=1
are significantly perturbed by quasar outflows, suggesting that measurements of
X-ray emission in high-redshift groups could well be a "smoking gun" for the
AGN heating hypothesis.Comment: 16 pages, 11 figures, submitted to ApJ, comments welcome
The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity
A theory for the structure of isothermal, self-gravitating gas spheres in
pressure equilibrium in a softened gravitational field is developed. The one
parameter spline softening proposed by Hernquist & Katz (1989) is used. We show
that the addition of this extra scale parameter implies that the set of
equilibrium solutions constitute a one-parameter family, rather than the one
and only one isothermal sphere solution for Newtonian gravity. We demonstrate
the perhaps somewhat surprising result that for any finite choice of softening
length and temperature, it is possible to deposit an arbitrarily large mass of
gas in pressure equilibrium and with a non-singular density distribution inside
of r_0 for any r_0 > 0. The theoretical predictions of our models are compared
with the properties of the small, massive, quasi-isothermal gas clumps which
typically form in numerical Tree-SPH simulations of 'passive' galaxy formation
of Milky Way sized galaxies. We find reasonable agreement despite the neglect
of rotational support in the models. We comment on whether the hydrodynamical
resolution in our numerical simulation of galaxy formation is sufficient, and
finally we conclude that one should be cautious, when comparing results of
numerical simulations involving gravitational softening and hydrodynamical
smoothing, with reality.Comment: 22 pages Latex + 12 figure
- âŠ